CITY OF FORT COLLINS CLIMATE ADAPTATION PLANNING WORKSHOP FOR SENIOR MANAGERS

November 14, 2013

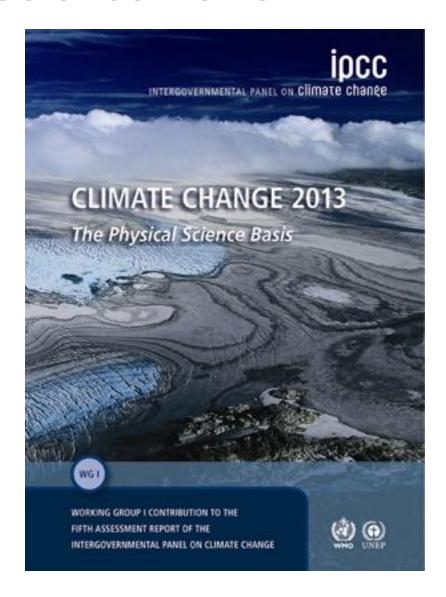
8:00am – 12:00pm

Agenda

•	8:00 - 8:15	Welcome and Background
---	-------------	------------------------

Project Goals, Steps, and Timeline

- Outcomes/Goals
 - Risk and vulnerability assessment matrix
 - Framework/tool for adaptation integration
- Steps/Timeline
 - November 14th (today) Vulnerability Assessment with Senior Management
 - December 6th Key Vulnerabilities Identified
 - December 10th Preparedness Goals and Adaptation Solutions with Staff
 - Who should participate?
 - December 31st (tentative) Draft Adaptation Integration Framework
 - Aligning with other City efforts


Introductions

- Name
- Title
- Department
- One thing that you love/value most about Fort Collins and/or the Front Range of Colorado

Climate Science Review

Climate Science Review

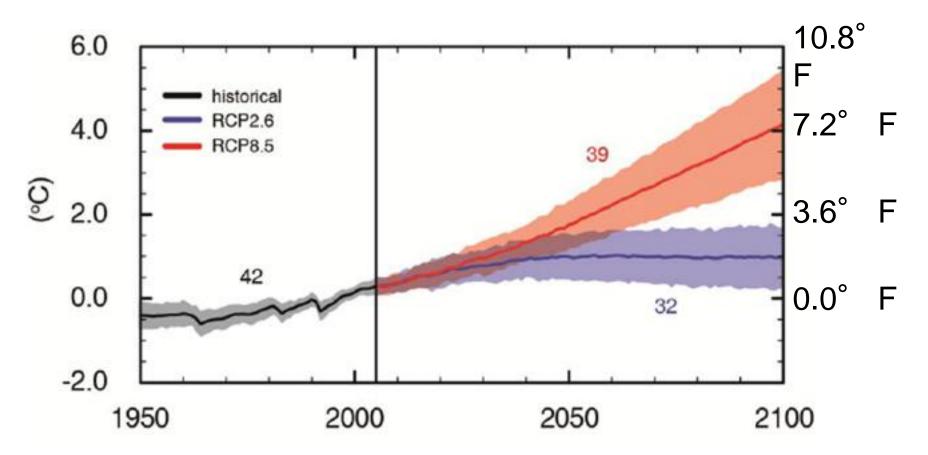
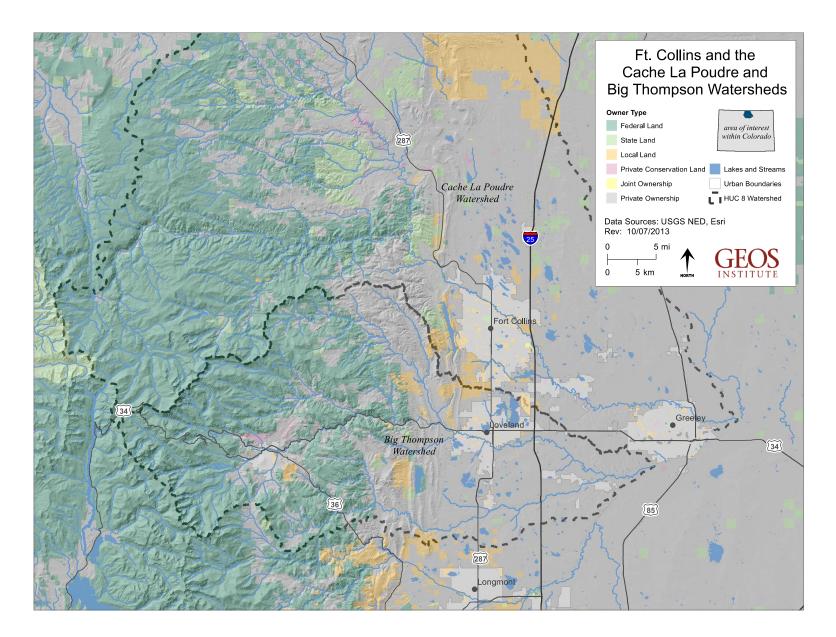



Figure 1. The future temperature development in the highest emissions scenario (red) and in a scenario with successful climate mitigation (blue) – the "4-degree world" and the "2-degree world."

Temperature

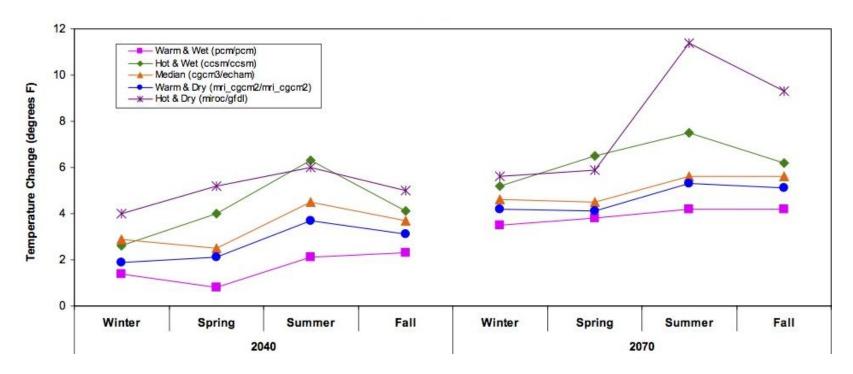
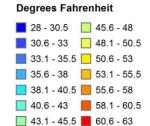
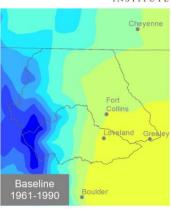
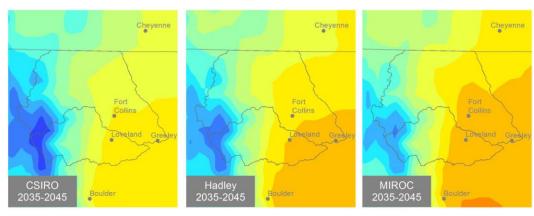


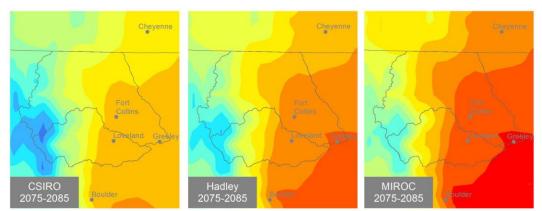
Figure 2. Average temperature change for the Front Range of Colorado, by season, projected for mid-century (left; 2035-45) and late-century (right; 2065-75). From Joint Front Range Climate Change Vulnerability Study 2012. Water Research Foundation.



Annual Average Temperature






Data Source: A2 emissions scenario downscaled by PNW Research Station, USDA Forest Service, following Flint and Flint (2012)

Rev: 10/17/2013

Temperature

Table 1. Average days per year of especially hot temperatures. For the future periods, the values shown are the medians of 60 projections. The percentages in parentheses are comparisons to 1961–1999 averages. This information from Rocky Mountain Climate Organization is in **DRAFT** form and is not for citation or circulation.

Hot Days per Year in Fort Collins Observations and Projections						
	Observations		Lower Emissions		Medium-High Emissions	
	1961–1999	2000-2013	2045–2064	2081-2100	2045-2064	2081-2100
Single Days						
90° or hotter	17.9	33.7 (188%)	43 (240%)	49 (274%)	55 (307%)	81 (453%)
95° or hotter	2.9	8.8 (303%)	10 (344%)	12 (414%)	17 (586%)	38 (1,310%)
100° or hotter	0.1	0.6 (600%)	1 (1,000%)	1 (1,000%)	2 (2,000%)	10 (10,000%)

Precipitation

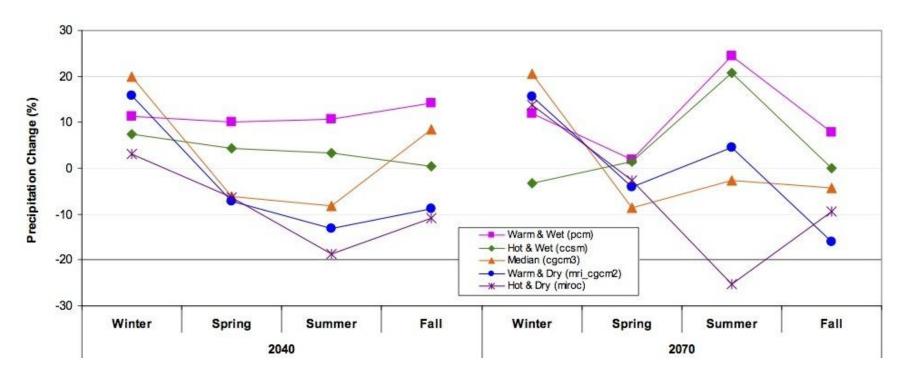


Figure 4. Average seasonal percent change in precipitation for the Front Range of Colorado, projected for mid-century (left; 2035-45) and late-century (right; 2065-75). From Joint Front Range Climate Change Vulnerability Study 2012. Water Research Foundation.

Snowpack

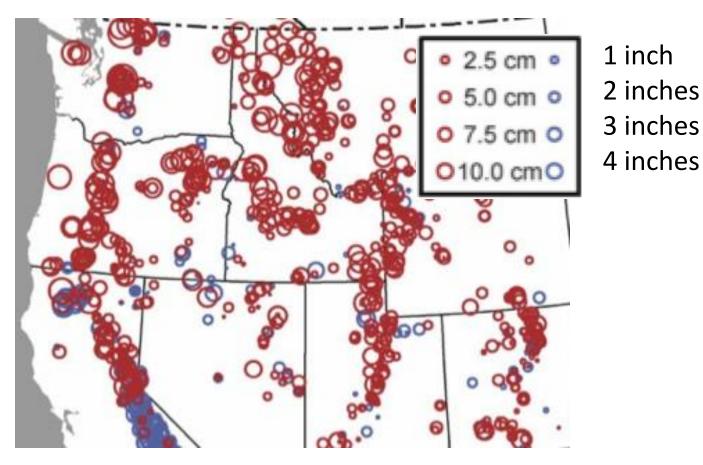
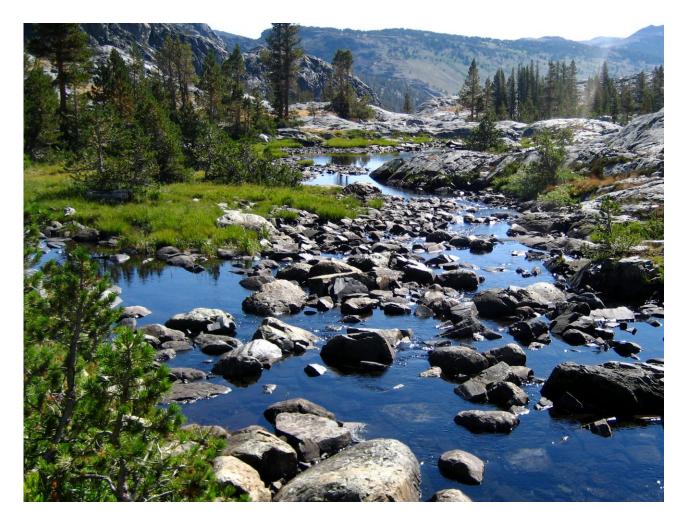


Figure 5. Increases (in blue) and decreases (in red) in April 1st snow-water equivalent (SWE) over the 1960–2002 period of record, adapted from Mote.¹²

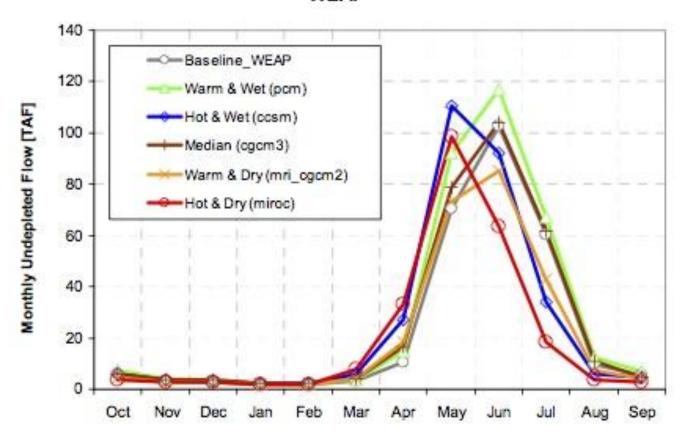


1 inch

2 inches

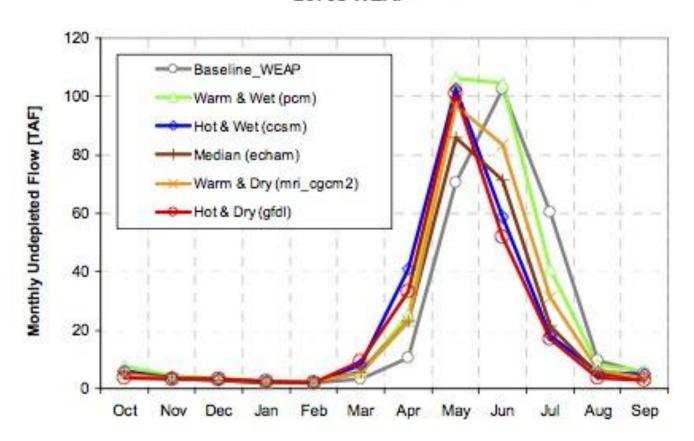
3 inches

Hydrology



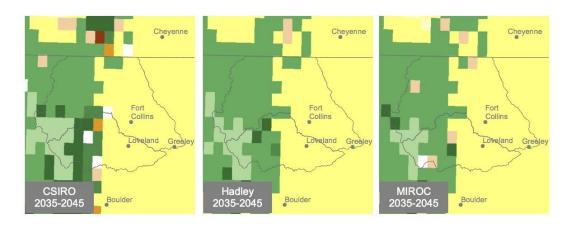
Hydrology

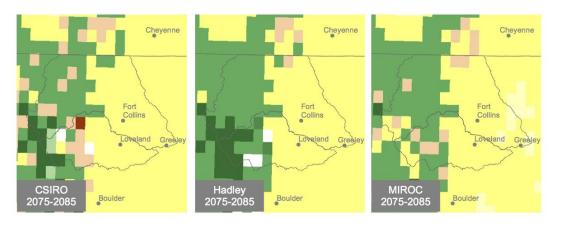
Cache la Poudre River at Mouth of Canyon (06752000) - 2040s WEAP


From Joint Front Range Climate Change Vulnerability Study 2012. Water Research Foundation

Hydrology

Cache la Poudre River at Mouth of Canyon (06752000) -2070s WEAP




From Joint Front Range Climate Change Vulnerability Study 2012. Water Research Foundation

Vegetation Type Classification Tundra Cheyenne Subalpine Forest Temperate Evergreen Needleleaf Forest Temperate Deciduous Broadleaf Forest Cache la Poudre Temperate Cool Mixed Forest and Big Thompson Temperate Evergreen Needleleaf Woodland Watersheds in Colorado Fort Collins Temperate Deciduous Broadleaf Woodland Temperate Cool Mixed Woodland Temperate Shrubland Loveland Greeley Temperate Grassland Data Source: MC1 from USDA-FS MAPPS team Rev: 10/16/2013 Boulder 1961-1990 20 km

Wildfire

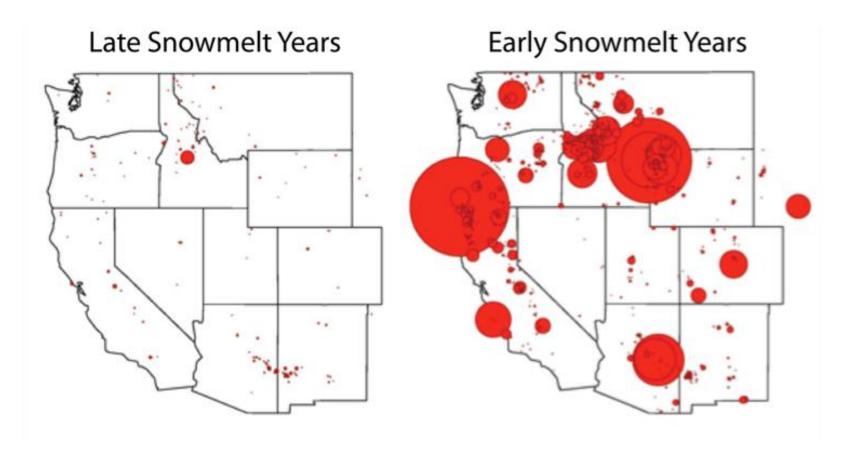


Figure 15. Forest Service, Park Service and Bureau of Indian Affairs large forest wildfires (>1000 acres) for years with early or late spring snowmelt, 1972 - 2003. From *Westerling et al 2006.*

Biomass Consumed Grams per Square Meter by Fire 0 - 5 6 - 10 Cheyenne 11 - 25 26 - 50 51 - 75 76 - 100 Cache la Poudre 101 - 150 Watersheds in Colorado Collins 151 - 200 201 - 300 Loveland Greele 301 - 472 Data Source: A2 emissions scenario downscaled by PNW Research Station, USDA Forest Service, 20 mi following Flint and Flint (2012) Baseline Boulder Rev: 10/16/2013 20 km Cheyenne Cheyenne Cheyenne Collins Collins Collins Loveland Greele dveland Greele oveland Greek CSIRO Hadley MIROC Boulder 2035-2045 2035-2045 2035-2045 Boulder Cheyenne Cheyenne Cheyenne Fort Collins Collins Collins Loveland Greek Loveland Greek **CSIRO** MIROC

2075-2085

Boulder

Boulder

2075-2085

Boulder

2075-2085

Carbon Stored Grams per Square Meter in Vegetation 0 - 2,000 2,001 - 4,000 Cheyenne 4,001 - 6,000 6,001 - 8,000 8,001 - 10,000 10,001 - 12,000 Cache la Poudre and Big Thompson 12,001 - 14,000 Fort Collins Watersheds in Colorado 14,001 - 16,000 16,001 - 18,000 Loveland Greeley 18,001 - 20,000 Data Source: A2 emissions scenario downscaled by PNW Research Station, USDA Forest Service, following Flint and Flint (2012) Baseline Boulder Rev: 10/16/2013 20 km Cheyenne Cheyenne Cheyenne Fort Fort Collins Collins Collins Loveland Greeley Loveland Greeley Loveland Greeley **CSIRO** Hadley MIROC Boulder Boulder Boulder 2035-2045 2035-2045 2035-2045 Cheyenne Cheyenne Cheyenne Fort Fort Fort Collins Collins Collins Loveland Greeley Loveland Greeley Loveland Greeley

CSIRO

2075-2085

Boulder

Boulder

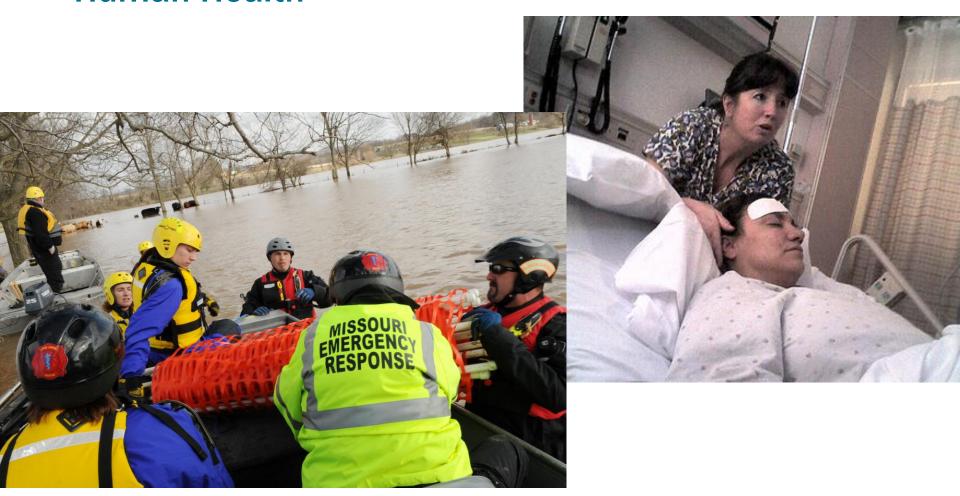
MIROC

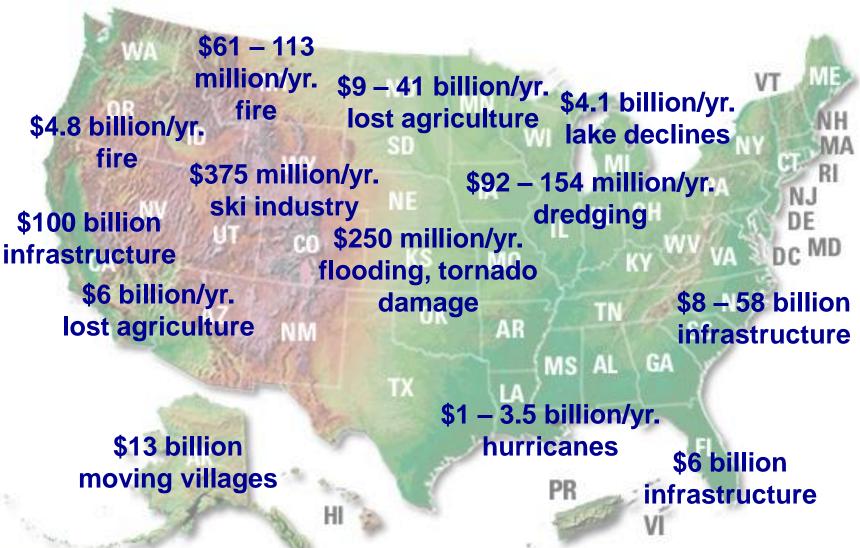
2075-2085

Boulder

Hadley

2075-2085


Ecological Change


Human Health

Economics

Economics

Climate Change Response

More dams as snow pack declines

Displacement from floods, fires, and storms

More ag land as production declines

More energy development

More forest thinning with wildfire risk

More air conditioning

We work to prepare communities in a coordinated, synergistic, and ecologically sound manner

Mainstreaming

Storytelling from Recent Events

- How was your department affected by High Park and/or the flood? The drought? Extreme heat events?
- What worked well?
- How can departments prepare for future events?

Vulnerability Assessment Introduction

2 Identify Regional Impacts

Build Strong Local Partnerships

Develop and Prioritize
Adaptation Strategies

Monitor and Re-evaluate Implemented Strategies

5 Identify Opportunities for Cost-sharing and Collaboration across Sectors

6 Implement Adaptation Strategies

Sensitivity Exposure - climate change projections - physical, biological, structural, behavioral, or policy limitations - secondary effects of climate - other stressors change **Potential Impact Adaptive Capacity** - ability to accommodate change **VULNERABILITY**

VULNERABILITY ASSESSMENT

A COMMUNITY WORKBOOK

Understanding the local risk of climate change

Table 1. Results from City of Fort Collins Climate Change Adaptation Planning, presented in a vulnerability assessment format.

			a vulnerability assessment format.
Target (resource,	Exposure	Sensitivity	Adaptive Capacity
population, or service)			
Water quantity for	Extended drought	Current storage capacity limited	Current reservoir storage can be
residents and businesses	Higher evaporation and	and new storage is controversial.	increased. (?)
	evapotranspiration leading to	Demand expected to increase	New storage is expensive.
	drier conditions, even if	with c.c.	Lack of diversity in supply increases
	precipitation increases	Water rights may provide	vulnerability.
	Lower snowpack – less storage,	insufficient yields – use would be	Conservation measures allow some
	quicker runoff	restricted.	adaptive capacity.
	Lower summer stream flow	Potential loss of	
		business/revenue.	
Water quality for	Lower flows, extended drought	Runoff following droughts or	New treatment may be needed -
residents and businesses	Coupled with severe storms	during floods will increase TOC	currently not in place.
	Flooding	and nutrients.	Lack of diversity in supply limits
		Potential loss of	adaptive capacity.
		business/revenue.	
Wastewater return to the	Lower flows, extended drought	Low flows and severe storms	DWRF has more adaptive capacity
natural environment	Coupled with severe storms	could increase pollutants.	then MWRF (can divert).
("receiving")	Earlier spring snow melt; rain-on-	Effluent likely to not meet water	Designed for 50-yr. to 100-yr. floods.
	snow events	quality standards.	Collection system has some areas of
	Flooding	Higher and more frequent peak	poor condition.
		discharges could lead to facilities	Current system built based on
		damage.	historical standards - needs to be
		Maintenance/repair costs could	upgraded to provide level of
		increase. Public perception an	protection that is expected.
		issue.	
	Higher temperatures affect water		Conservation measures to retain
	chemistry.	Could challenge required limits	flow allow some adaptive capacity.
		for NPDES, but there is some	
		room for change.	
Energy supply	Higher temperatures	Increased demand (in summer?)	Additional resources needed to
		Goal to reduce GHG emissions a	increase capacity.
		consideration. Need to have low	Conservation measures allow some
		carbon sources.	adaptive capacity.

Table 2. Vulnerability assessment applied to Fort Collins Utilities climate change impacts and implications information (Note: this is an example, and is not based on expert input).

		SENSITIVITY					
		Low	Med	High			
ACITY	Low			Water quality			
ADAPTIVE CAPACITY	Med		Wastewater return	Water quantity			
AD	High			Energy supply			

Red = highly vulnerable Orange = med-high vulnerability Yellow = medium vulnerability Light green = med-low vulnerability Dark green = low vulnerability

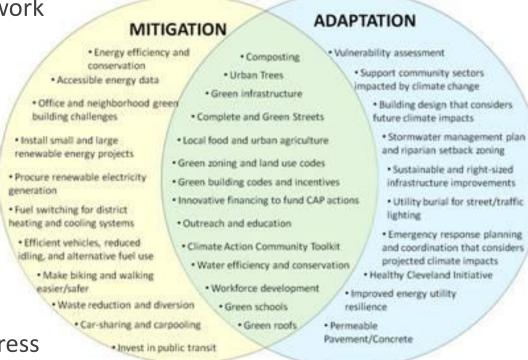
Vulnerability Assessment Prioritization

Very high priority = High community **value** (cultural, social, economic), large magnitude of expected impacts, near-term and/or mid-term impacts.

High priority = High community **value**. Severe impacts, but timing may be many decades in the future or projections may be especially uncertain.

Medium priority = Very specific impacts with limited geographic scope. Medium community **value**.

BREAK


VULNERABILITY ASSESSMENT MATRIX AND RANKING

Translating to Action: Strategic Planning and Directional Strategies

- How does adaptation planning fit into the current organization and decision making framework for your organization?
- What adjustments/changes need to made to integrate adaptation planning?
- How will the top ranked vulnerabilities impact your department?
- What ideas do you have for adaptation solutions to address these vulnerabilities?

Translating to Action: Adaptation Strategy Evaluation Criteria

- Estimated implementation cost
- Alignment with existing priorities
- Approximate timeframe required to implement action
- Level of effort required by staff to implement action
- Political feasibility as measured by the degree of political support for an action
- Technical feasibility
- Existing funding sources
- Co-benefits (climate mitigation, job creation, social equity)

Wrap-up and Next Steps

- December 6th Key Vulnerabilities Identified
- December 10th Preparedness Goals and Adaptation Solutions with Staff
 - Who should participate?
- December 31st (tentative) Draft Adaptation Integration Framework
 - Aligning with other City efforts

