Appendix D Complete list of risks, strategies, and actions identified and prioritized for the Climate Change Vulnerability Assessment and Adaptation Strategy for Tillamook Estuaries Partnership 1. Multiple species, including coho and Chinook, negatively affected by increased scouring of redds (salmon spawning nests), displaced juveniles, and loss of juvenile refuge areas TEP goal affected: Assess, protect, and enhance instream habitat Near term, high likelihood, high consequence | Potential strategies | Potential Actions | Co-benefits | Barriers or conflicts | Partners | Effective-
ness | TEP
influence | Relative
cost | |---|--|------------------------------|---|---|--------------------|------------------|------------------| | Manage
streamflow | Sustainable water storage and release | Water quality | Water rights, costs, permits | All | Medium | Medium | High | | Habitat im-
provement | Increase off-channel habitat | Flood abate-
ment | Space availability, costs, permits | All | High | High | High | | | Large woody debris (LWD)
to collect gravels for more
subsurface flow and assist
catching landslide material | Reduce water
temperatures | Costs | All | High | High | High | | | Floodplain habitat restoration | Flood abate-
ment | Perceived conflicts be-
tween conservation and
development/other land
uses, permits | All | High | High | High | | | Riparian plantings | Biodiversity and habitat | | Watershed councils, Land trusts | High | High | High | | | Stream channel restoration to create more channel complexity | Flood abate-
ment | Difficult to show success of restoration projects via monitoring | All | High | High | High | | | Reconnect springs, wet-
lands, floodplains that can
serve as cold water refugia | Flood abate-
ment | Difficult to show success of big restoration projects via monitoring | Watershed councils | High | High | High | | | Address warming caused by inline impoundments | Water quality | Balance water need with
flow requirements for
cooling | Private land-
owners
USFW, ODFW,
NOAA, ODA,
OWRD | Low | Low | High | | | Forest management strategy to balance water absorption | Biodiversity
and habitat | Forest practices | Private land-
owners
USFW, ODFW,
NOAA, ODA,
OWRD | Medium | Medium | High | | | Increase diversity of habitat to create more salmonid life history options | Biodiversity and habitat | | All | Medium | High | Medium | | Increase
natural upland
water storage | Promote beaver habitat in the uplands | Biodiversity
and habitat | Loss of riparian veg-
etation and warming
water in ponds, potential
misperception, landown-
er concerns | USFWS, ODFW | Unknown | Medium | Medium | | Protect exist-
ing habitat | Protect existing healthy riparian vegetation, which provides shade | Biodiversity
and habitat | Property/landowner
concerns and rights,
limitations on use and
perceived use | USFWS, ODFW,
NOAA, Land-
owners, Local
governments
(municipal,
county) | High | High | Low | ## 2. Change in distribution and survival of native aquatic organisms, including invertebrates, amphibians, and native fish TEP goal affected: Assess, protect, and enhance instream habitat TEP goal affected: Assess, protect, and enhance instream habitat Near term, high likelihood, high consequence | Potential strategies | Potential Actions | Co-benefits | Barriers or conflicts | Partners | Effective-
ness | TEP
influence | Relative
cost | |---|--|------------------------------|---|---|--------------------|------------------|------------------| | Manage
streamflow | Sustainable water storage and release | Water quality | Water rights, costs, permits | ALL | Medium | Medium | High | | Habitat im-
provement | Increase off-channel habitat | Flood abate-
ment | Space availability, costs, permits | ALL | High | High | High | | | Large woody debris (LWD)
to collect gravels for more
subsurface flow and assist
catching landslide material | Reduce water
temperatures | Costs | ALL | High | High | High | | | Floodplain habitat restoration | Flood abate-
ment | Perceived conflicts be-
tween conservation and
development/other land
uses, permits | ALL | High | High | High | | | Riparian plantings | Biodiversity and habitat | | Watershed councils, Land trusts | High | High | High | | | Stream channel restoration to create more channel complexity | Flood abate-
ment | Difficult to show success of restoration projects via monitoring | ALL | High | High | High | | | Reconnect springs, wet-
lands, floodplains that can
serve as cold water refugia | Flood abate-
ment | Difficult to show success of restoration projects via monitoring | Watershed councils | High | High | High | | | Address warming caused by inline impoundments | Water quality | Balance water need with
flow requirements for
cooling | Private land-
owners
USFW, ODFW,
NOAA, ODA,
OWRD (Water
Resources
Department) | Low | Low | High | | | Forest management strategy to balance water absorption | Biodiversity
and habitat | Forest practices | Private land-
owners
USFW, ODFW,
NOAA, ODA,
OWRD | Medium | Medium | High | | | Increase diversity of habitat to create more salmonid life history options | Biodiversity and habitat | | ALL | Medium | High | Medium | | Increase
natural upland
water storage | Promote beaver habitat in the uplands | Biodiversity
and habitat | Loss of riparian veg-
etation and warming
water in ponds, potential
misperception, landown-
er concerns | USFWS, ODFW | Unknown | Medium | Medium | | Protect existing habitat | Protect existing healthy riparian vegetation, which provides shade | Biodiversity
and habitat | Property/landowner
concerns and rights,
limitations on use and
perceived use | USFWS, ODFW,
NOAA, Land-
owners, Local
governments
(municipal,
county) | High | High | Low | # 3. Broadening and subsequent contraction of fish distribution may leave fish stranded in disconnected pools or vulnerable to predation TEP goal affected: Assess, protect, and enhance instream habitat Near term, high likelihood, high consequence | Potential strategies | Potential Actions | Co-benefits | Barriers or conflicts | Partners | Effective-
ness | TEP
influence | Relative
cost | |---|--|------------------------------|---|---|--------------------|------------------|------------------| | Manage
streamflow | Sustainable water storage and release | Water quality | Water rights, costs, permits | All | Medium | Medium | High | | Habitat im-
provement | Increase off-channel habitat | Flood abate-
ment | Space availability, costs, permits | All | High | High | High | | | Large woody debris (LWD)
to collect gravels for more
subsurface flow and assist
catching landslide material | Reduce water
temperatures | Costs | All | High | High | High | | | Floodplain habitat restoration | Flood abate-
ment | Perceived conflicts btwn
conservation, develop-
ment, other land uses,
permits | All | High | High | High | | | Riparian plantings | Biodiversity and habitat | | Watershed councils, Land trusts | High | High | High | | | Stream channel restoration to create more channel complexity | Flood abate-
ment | Difficult to show success of restoration projects via monitoring | All | High | High | High | | | Reconnect springs, wet-
lands, floodplains that can
serve as cold water refugia | Flood abate-
ment | Difficult to show success of restoration projects via monitoring | Watershed councils | High | High | High | | | Address warming caused by inline impoundments | Water quality | Balance water need with flow requirements for cooling | Private land-
owners
USFW, ODFW,
NOAA, ODA,
OWRD | Low | Low | High | | | Forest management strategy to balance water absorption | Biodiversity
and habitat | Forest practices | Private land-
owners
USFW, ODFW,
NOAA, ODA,
OWRD | Medium | Medium | High | | | Increase diversity of habitat to create more salmonid life history options | Biodiversity and habitat | | ALL | Medium | High | Medium | | Increase
natural upland
water storage | Promote beaver habitat in the uplands | Biodiversity
and habitat | Loss of riparian veg-
etation and warming
water in ponds, potential
misperception, landown-
er concerns | USFWS, ODFW | Unknown | Medium | Medium | | Protect exist-
ing habitat | Protect existing healthy riparian vegetation, which provides shade | Biodiversity
and habitat | Property/landowner
concerns and rights,
limitations on use and
perceived use | USFWS, ODFW,
NOAA, Land-
owners, Local
governments
(municipal,
county) | High | High | Low | ## ${\bf 4.\ Native\ salmonids\ and\ other\ aquatic\ species\ negatively\
affected\ by\ disease}$ TEP goal affected: Assess, protect, and enhance instream habitat Near term, high likelihood, high consequence | Potential strategies | Potential Actions | Co-benefits | Barriers or conflicts | Partners | Effective-
ness | TEP
influence | Relative
cost | |----------------------|-------------------|-------------|-----------------------|----------------------|--------------------|------------------|------------------| | Transfer | | | | USFWS, ODFW,
NOAA | | | | # 5. Impacts to all ages of salmonids, from warmer water, causing population declines TEP goal affected: Reduce instream temperatures to meet salmonid requirements Near term, high likelihood, high consequence | Potential strategies | Potential Actions | Co-benefits | Barriers or conflicts | Partners | Effective-
ness | TEP
influence | Relative
cost | |---|--|------------------------------|---|---|--------------------|------------------|------------------| | Manage
streamflow | Sustainable water storage and release | Water quality | Water rights, costs, permits | All | Medium | Medium | High | | Habitat improvement (to maintain or reduce temps) | Increase off-channel habitat | Flood abate-
ment | Space availability, costs, permits | All | High | High | High | | | Large woody debris (LWD)
to collect gravels for more
subsurface flow and assist
catching landslide material | Reduce water
temperatures | Costs | All | High | High | High | | | Floodplain habitat restoration | Flood abate-
ment | Perceived conflicts be-
tween conservation and
development/other land
uses, permits | All | High | High | High | | | Riparian plantings | Biodiversity and habitat | | Watershed
councils, Land
trusts | High | High | High | | | Stream channel restoration to create more channel complexity | Flood abate-
ment | Difficult to show success of big restoration projects via monitoring | All | High | High | High | | | Reconnect springs, wet-
lands, floodplains that can
serve as cold water refugia | Flood abate-
ment | Difficult to show success of big restoration projects via monitoring | Watershed councils | High | High | High | | | Address warming caused by inline impoundments | Water quality | Balance water need with
flow requirements for
cooling | Private land-
owners
USFW, ODFW,
NOAA, ODA,
OWRD | Low | Low | High | | | Forest management strategy to balance water absorption | Biodiversity
and habitat | Forest practices | Private land-
owners
USFW, ODFW,
NOAA, ODA,
OWRD | Medium | Medium | High | | | Increase diversity of habitat to create more salmonid life history options | Biodiversity and habitat | | All | Medium | High | Medium | | Increase
natural upland
water storage | Promote beaver habitat in the uplands | Biodiversity
and habitat | Loss of riparian veg-
etation and warming
water in ponds, potential
misperception, landown-
er concerns | USFWS, ODFW | Unknown | Medium | Medium | | Protect existing habitat | Protect existing healthy riparian vegetation, which provides shade | | Property/landowner
concerns and rights,
limitations on use and
perceived use | USFWS, ODFW,
NOAA, Land-
owners, Local
governments
(municipal,
county) | High | High | Low | # 6. Exacerbated stress to fish from low flows and warmer water # TEP goal affected: Reduce instream temperatures to meet salmonid requirements Near term, high likelihood, high consequence | Potential strategies | Potential Actions | Co-benefits | Barriers or conflicts | Partners | Effective-
ness | TEP
influence | Relative
cost | |---|--|------------------------------|---|---|--------------------|------------------|------------------| | Manage
streamflow | Sustainable water storage and release | Water quality | Water rights, costs, permits | All | Medium | Medium | High | | Habitat Im-
provement | Increase off-channel habitat | Flood abate-
ment | Space availability, costs, permits | All | High | High | High | | | Large woody debris (LWD)
to collect gravels for more
subsurface flow and assist
catching landslide material | Reduce water
temperatures | Costs | All | High | High | High | | | Floodplain habitat restoration | Flood abate-
ment | Perceived conflicts be-
tween conservation and
development/other land
uses, permits | All | High | High | High | | | Riparian plantings | Biodiversity and habitat | | Watershed councils, Land trusts | High | High | High | | | Stream channel restoration to create more channel complexity | Flood abate-
ment | Difficult to show success of big restoration projects via monitoring | All | High | High | High | | | Reconnect springs, wet-
lands, floodplains that can
serve as cold water refugia | Flood abate-
ment | Difficult to show success of big restoration projects via monitoring | Watershed councils | High | High | High | | | Address warming caused by inline impoundments | Water quality | Balance water need with
flow requirements for
cooling | Private land-
owners
USFW, ODFW,
NOAA, ODA,
OWRD (Water
Resources
Department) | Low | Low | High | | | Forest management strategy to balance water absorption | Biodiversity
and habitat | Forest practices | Private land-
owners
USFW, ODFW,
NOAA, ODA,
OWRD | Medium | Medium | High | | | Increase diversity of habitat to create more salmonid life history options | Biodiversity and habitat | | All | Medium | High | Medium | | Increase
natural upland
water storage | Promote beaver habitat in the uplands | Biodiversity
and habitat | Loss of riparian veg-
etation and warming
water in ponds, potential
misperception, landown-
er concerns | USFWS, ODFW | Unknown | Medium | Medium | | Protect existing habitat | Protect existing healthy riparian vegetation, which provides shade | Biodiversity
and habitat | Property/landowner
concerns and rights,
limitations on use and
perceived use | USFWS, ODFW,
NOAA, Land-
owners, Local
governments
(municipal,
county) | High | High | Low | | Reduce water
demand | Education and outreach on water conservation | | | Watershed
councils,
municipalities,
media, water
districts | High | High | Medium | ## 7. Greater demand for use of riprap and other measures to combat erosion TEP goal affected: Reduce the adverse impacts of erosion and sedimentation from developed and developing areas Near term, high likelihood, high consequence | Potential strategies | Potential Actions | Co-benefits | Barriers or conflicts | Partners | Effective-
ness | TEP
influence | Relative
cost | |----------------------|-------------------|-------------|-----------------------|--|--------------------|------------------|------------------| | Transfer | | | | City planning,
County plan-
ning, DSL (Div.
of State Lands) | | | | ## 8. More resources and funds required by TEP and partners to enhance estuary habitats TEP goal affected: Assess, protect and enhance estuary and tidal habitats Near term, high likelihood, high consequence | Potential strategies | Potential Actions | Co-benefits | Barriers or conflicts | Partners | Effective-
ness | TEP
influence | Relative
cost | |--------------------------------------|-----------------------|--|---|---|--------------------|------------------|------------------| | Expand
organizational
capacity | Extend partnerships | Building ca-
pacity, greater
community
engagement | | Many differ-
ent agencies,
groups, private
individuals, lo-
cal businesses,
and others | High | High | Low | | | Write grant proposals | | Competition for potential money/grant funds | Many differ-
ent agencies,
groups, private
individual, local
businessess,
and others | High | High | Medium | | | Expand capacity | | | Many differ-
ent agencies,
groups, private
individuals, lo-
cal businesses,
and others | High | High | Medium | # 9. Negative impacts to shellfish, crabbing, and fishing industries and recreational opportunities TEP goal affected: Promote beneficial uses of the bays and rivers Near term, high likelihood, high consequence | Potential strategies | Potential Actions | Co-benefits | Barriers or conflicts | Partners | Effective-
ness | TEP
influence | Relative
cost | |-----------------------|--|---------------|-------------------------------------|--|--------------------|------------------|------------------| | Limit nutrient inputs | Farm water quality plans | Water quality | Impact on agriculture | NRCS/OSU
Extension, DEQ,
Dept. of Ag
(ODA), Soil and
Water Cons.
District | High | Medium | Low | | | Storm water management | Water quality | Cost of infrastructure improvements | City/County,
DEQ |
High | Medium | High | | | County level ordinance or rulemaking | Water quality | | County, DEQ | High | Medium | High | | | Domestic sewage - septic system improvements or upgrades | Water quality | Cost of infrastructure improvements | City/County,
private land-
owners, DEQ | High | Medium | High | | | Municipal sewage - waste-
water treatment plant
upgrades | Water quality | Cost of infrastructure improvements | Cities and Dis-
tricts, DEQ | High | Medium | High | | | Water quality monitoring and assessment (for quicker response) | Water quality | | DEQ, EPA, ODA | Medium | High | High | | Reduce | TBD Actions to reduce GHG | Help meet | |---------------|---------------------------|-----------| | greenhouse | emissions | state GHG | | gas emissions | | targets | | across the | | | | County | | | ## 10. Lower survival of newly planted vegetation. TEP goal affected: Assess, protect, and enhance riparian habitat. Near term, high likelihood, high consequence. | Potential
strategies | Potential Actions | Co-benefits | Barriers or conflicts | Partners | Effective-
ness | TEP
influence | Relative
cost | |------------------------------------|---|---------------|-----------------------|---------------------------------------|--------------------|------------------|------------------| | Improve riparian planting survival | Plant diverse species in riparian areas | Water quality | | Watershed
councils, Land
trusts | High | High | Medium | | | Replant riparian areas as needed | Water quality | | Watershed councils, Land trusts | High | High | Medium | | | Monitor riparian planting survival | | | Watershed
councils, Land
trusts | High | High | Medium | ## 11. Difficulty meeting suspended sediment targets and disruption of spawning and refuge habitat quality for juvenile fishes TEP goal affected: Reduce instream suspended sediments to meet salmonid requirements Near term, medium likelihood, high consequence | Potential strategies | Potential Actions | Co-benefits | Barriers or conflicts | Partners | Effective-
ness | TEP
influence | Relative
cost | |--------------------------|--|------------------------------|--|--|--------------------|------------------|------------------| | Manage
streamflow | Sustainable water storage and release | Water quality | Water rights, costs, permits | All | Medium | Medium | High | | Habitat im-
provement | Increase off-channel habitat | Flood abate-
ment | Space availability, costs, permits | All | High | High | High | | | Large woody debris (LWD)
to collect gravels for more
subsurface flow and assist
catching landslide material | Reduce water
temperatures | Cost | All | High | High | High | | | Floodplain habitat restoration | Flood abate-
ment | Perceived conflicts be-
tween conservation and
development/other land
uses, permits | All | High | High | High | | | Riparian plantings | Biodiversity and habitat | | Watershed councils, Land trusts | High | High | High | | | Stream channel restoration to create more channel complexity | Flood abate-
ment | Difficult to show success of restoration projects via monitoring | All | High | High | High | | | Reconnect springs, wet-
lands, floodplains that can
serve as cold water refugia | Flood abate-
ment | Difficult to show success of restoration projects via monitoring | Watershed councils | High | High | High | | | Address warming caused by inline impoundments | Water quality | Balance water need with
flow requirements for
cooling | Private land-
owners
USFW, ODFW,
NOAA, ODA,
OWRD | Low | Low | High | | | Forest management strategy to balance water absorption | Biodiversity
and habitat | Forest practices | Private land-
owners
USFW, ODFW,
NOAA, ODA,
OWRD | Medium | Medium | High | | | Increase diversity of habitat to create more salmonid life history options | Biodiversity
and habitat | | All | Medium | High | Medium | | Increase
natural upland
water storage | Promote beaver habitat in the uplands | Biodiversity
and habitat | Loss of riparian veg-
etation and warming
water in ponds, potential
misperception, landown-
er concerns | USFWS, ODFW | Unknown | Medium | Medium | |---|--|-----------------------------|---|---|---------|--------|--------| | Protect exist-
ing habitat | Protect existing healthy riparian vegetation, which provides shade | Biodiversity
and habitat | Property/landowner
concerns and rights,
limitations on use and
perceived use | USFWS, ODFW,
NOAA, Land-
owners, Local
governments
(municipal,
county) | High | High | Low | ## 12. Contamination of waterways and disruption to fish passage TEP goal affected: Reduce instream suspended sediments to meet salmonid requirements Near term, medium likelihood, high consequence | Potential strategies | Potential Actions | Co-benefits | Barriers or conflicts | Partners | Effective-
ness | TEP
influence | Relative
cost | |--|--|------------------------------|--|--|--------------------|------------------|------------------| | Improvements
to infrastruc-
ture | Identify culverts and roads
most at risk of failure from
high flows (esp. those
culverts with insufficient
capacity) | | Access to culverts and roads on private lands | NRCS, County,
Cities, ODF,
USFS, BLM,
Landowners,
ODOT | Medium | High | Low | | | Replace or remove culverts and roads most at risk | Safety and access benefits | Cost, regulatory compo-
nents, waste disposal/
management, land avail-
ability for relocation | Wastewater
treatment
plants (special
districts), EPA,
DEQ, Tillamook
County (as
permitter) | High | Medium | High | | | Move/improve (lagoon
to cistern) wastewater
treatment lagoons (a few in
Nehalem, Cloverdale) to re-
duce risk from overflowing | Fisheries and shellfisheries | Cost, landowner partici-
pation, re-routing traffic,
regulatory components | Municipalities,
special districts,
Oregon health
authority, DEQ | High | Medium | High | ## 13. Changes in FEMA designations, which in turn limit land use for agriculture TEP goal affected: Improve farm management practices Near term, medium likelihood, high consequence | Potential strategies | Potential Actions | Co-benefits | Barriers or conflicts | Partners | Effective-
ness | TEP
influence | Relative
cost | |----------------------|-------------------|-------------|-----------------------|--------------------|--------------------|------------------|------------------| | Transfer | | | | DOA, USDA,
FEMA | | | | # 14. Lower dissolved oxygen and decreased survival of aquatic species TEP goal affected: Assess, protect, and enhance instream habitat Near term, high likelihood, medium consequence | Potential strategies | Potential Actions | Co-benefits | Barriers or conflicts | Partners | Effective-
ness | TEP
influence | Relative
cost | |--------------------------|--|------------------------------|--|----------|--------------------|------------------|------------------| | Manage
streamflow | Sustainable water storage and release | Water quality | Water rights, costs, permits | All | Medium | Medium | High | | Habitat im-
provement | Increase off-channel habitat | Flood abate-
ment | Space availability, costs, permits | All | High | High | High | | | Large woody debris (LWD)
to collect gravels for more
subsurface flow and assist
catching landslide material | Reduce water
temperatures | Costs | All | High | High | High | | | Floodplain habitat restoration | Flood abate-
ment | Perceived conflicts be-
tween conservation and
development/other land
uses, permits | All | High | High | High | | | Riparian plantings | Biodiversity and habitat | | Watershed
councils, Land
trusts | High | High | High | |---|---|-----------------------------|---|---|---------|--------|--------| | | Stream channel restoration to create more channel complexity | Flood abate-
ment | Difficult to show success of big restoration projects via monitoring | All | High | High | High | | | Reconnect springs, wet-
lands, floodplains that can
serve as cold water refugia | Flood abate-
ment | Difficult to show success of big restoration projects via monitoring | Watershed councils | High | High | High | | | Address warming caused by inline impoundments | Water quality |
Balance water need with
flow requirements for
cooling | Private land-
owners
USFW, ODFW,
NOAA, ODA,
OWRD | Low | Low | High | | | Forest management strategy to balance water absorption | Biodiversity
and habitat | Forest practices | Private land-
owners
USFW, ODFW,
NOAA, ODA,
OWRD | Medium | Medium | High | | | Increase diversity of habitat to create more salmonid life history options | Biodiversity and habitat | | All | Medium | High | Medium | | Increase
natural upland
water storage | Promote beaver habitat in the uplands | Biodiversity
and habitat | Loss of riparian veg-
etation and warming
water in ponds, potential
misperception, landown-
er concerns | USFWS, ODFW | Unknown | Medium | Medium | | Protect existing habitat | Protect existing healthy riparian vegetation, which provides shade | Biodiversity
and habitat | Property/landowner
concerns and rights,
limitations on use and
perceived use | USFWS, ODFW,
NOAA, Land-
owners, Local
governments
(municipal,
county) | High | High | Low | ## 15. Reduced ability of TEP's partners to assess the health of salmonids via sampling TEP goal affected: Assess health of salmonid, shellfish, and other aquatic species stocks Near term, high likelihood, medium consequence | Potential
strategies | Potential Actions | Co-benefits | Barriers or conflicts | Partners | Effective-
ness | TEP
influence | Relative
cost | | |-------------------------|-------------------|-------------|-----------------------|----------|--------------------|------------------|------------------|--| | Transfer | | | | | | | | | # 16. Overdraft of river water and potential shift to groundwater use during low flow periods TEP goal affected: Promote beneficial uses of the bays and rivers Near term, high likelihood, medium consequence | Potential
strategies | Potential Actions | Co-benefits | Barriers or conflicts | Partners | Effective-
ness | TEP
influence | Relative
cost | |-------------------------|-------------------|-------------|-----------------------|----------|--------------------|------------------|------------------| | Transfer | | | | | | | | # 17. Spring Chinook eggs disrupted by higher peak flows TEP goal affected: Promote beneficial uses of the bays and rivers Near term, high likelihood, medium consequence | Potential strategies | Potential Actions | Co-benefits | Barriers or conflicts | Partners | Effective-
ness | TEP
influence | Relative
cost | |--------------------------|---------------------------------------|----------------------|------------------------------------|----------|--------------------|------------------|------------------| | Manage
streamflow | Sustainable water storage and release | Water quality | Water rights, costs,
permits | All | Medium | Medium | High | | Habitat im-
provement | Increase off-channel habitat | Flood abate-
ment | Space availability, costs, permits | All | High | High | High | | | Large woody debris (LWD)
to collect gravels for more
subsurface flow and assist
catching landslide material | Reduce water
temperatures | Costs | All | High | High | High | |---|--|------------------------------|---|---|---------|--------|--------| | | Floodplain habitat restoration | Flood abate-
ment | Perceived conflicts be-
tween conservation and
development/other land
uses, permits | All | High | High | High | | | Riparian plantings | Biodiversity and habitat | | Watershed councils, Land trusts | High | High | High | | | Stream channel restoration to create more channel complexity | Flood abate-
ment | Difficult to show success of big restoration projects via monitoring | All | High | High | High | | | Reconnect springs, wet-
lands, floodplains that can
serve as cold water refugia | Flood abate-
ment | Difficult to show success of big restoration projects via monitoring | Watershed councils | High | High | High | | | Address warming caused by inline impoundments | Water quality | Balance water need with flow requirements for cooling | Private land-
owners
USFW, ODFW,
NOAA, ODA,
OWRD | Low | Low | High | | | Forest management strategy to balance water absorption | Biodiversity
and habitat | Forest practices | Private land-
owners
USFW, ODFW,
NOAA, ODA,
OWRD | Medium | Medium | High | | | Increase diversity of habitat to create more salmonid life history options | Biodiversity and habitat | | All | Medium | High | Medium | | Increase
natural upland
water storage | Promote beaver habitat in the uplands | Biodiversity
and habitat | Loss of riparian veg-
etation and warming
water in ponds, potential
misperception, landown-
er concerns | USFWS, ODFW | Unknown | Medium | Medium | | Protect exist-
ing habitat | Protect existing healthy riparian vegetation, which provides shade | Biodiversity
and habitat | Property/landowner
concerns and rights,
limitations on use and
perceived use | USFWS, ODFW,
NOAA, Land-
owners, Local
governments
(municipal,
county) | High | High | Low | ## 18. Higher water demand for grass in summer, while supplies are already limited TEP goal affected: Improve farm management practices Near term, high likelihood, medium consequence | Potential strategies | Potential Actions | Co-benefits | Barriers or conflicts | Partners | Effective-
ness | TEP
influence | Relative
cost | |----------------------|-------------------|-------------|-----------------------|---|--------------------|------------------|------------------| | Transfer | | | | Oregon Water
Resources,
ODFW, water
rights inventory | | | | #### 19. Native fish less competitive against warm water fish such as bass, pan fish, and others TEP goal affected: Reduce instream temperatures to meet salmonid requirements Near term, high likelihood, medium consequence | Potential strategies | Potential Actions | Co-benefits | Barriers or conflicts | Partners | Effective-
ness | TEP
influence | Relative
cost | |--------------------------|---------------------------------------|----------------------|------------------------------------|----------|--------------------|------------------|------------------| | Manage
streamflow | Sustainable water storage and release | Water quality | Water rights, costs, permits | All | Medium | Medium | High | | Habitat im-
provement | Increase off-channel habitat | Flood abate-
ment | Space availability, costs, permits | All | High | High | High | | | Large woody debris (LWD)
to collect gravels for more
subsurface flow and assist
catching landslide material | Reduce water
temperatures | Costs | All | High | High | High | |---|--|------------------------------|---|---|---------|--------|--------| | | 66.2.c. Floodplain habitat restoration | Flood abate-
ment | Perceived conflicts be-
tween conservation and
development/other land
uses, permits | All | High | High | High | | | Riparian plantings | Biodiversity and habitat | | Watershed councils, Land trusts | High | High | High | | | Stream channel restoration to create more channel complexity | Flood abate-
ment | Difficult to show success of big restoration projects via monitoring | All | High | High | High | | | Reconnect springs, wet-
lands, floodplains that can
serve as cold water refugia | Flood abate-
ment | Difficult to show success of big restoration projects via monitoring | Watershed councils | High | High | High | | | Address warming caused by inline impoundments | Water quality | Balance water need with
flow requirements for
cooling | Private land-
owners
USFW, ODFW,
NOAA, ODA,
OWRD | Low | Low | High | | | Forest management strategy to balance water absorption | Biodiversity
and habitat | Forest practices | Private land-
owners
USFW, ODFW,
NOAA, ODA,
OWRD | Medium | Medium | High | | | Increase diversity of habitat to create more salmonid life history options | Biodiversity and habitat | | All | Medium | High | Medium | | Increase
natural upland
water storage | Promote beaver habitat in the uplands | Biodiversity
and habitat | Loss of riparian veg-
etation and warming
water in ponds, potential
misperception, landown-
er concerns | USFWS, ODFW | Unknown | Medium | Medium | | Protect exist-
ing habitat | Protect existing healthy riparian vegetation, which provides shade | Biodiversity
and habitat | Property/landowner
concerns and rights,
limitations on use and
perceived use | USFWS, ODFW,
NOAA, Land-
owners, Local
governments
(municipal,
county) | High | High | Low | #### 20. More gravel deposits and downed wood, especially in areas with steep slopes, could have positive impacts to fish habitat in headwater streams, but risk in lowlands near infrastructure TEP goal affected: Improve channel features to improve sediment storage and routing Near term, high likelihood, medium consequence | Potential
strategies | Potential Actions | Co-benefits | Barriers or conflicts | Partners | Effective-
ness | TEP
influence | Relative
cost |
---|---|------------------------|-----------------------|--------------------------|--------------------|------------------|------------------| | Identify and prioritize areas for restoration | Identify sites where gravel deposits and downed wood might enhance fish habitat | | Land ownership | Landowners,
USFS, BLM | Medium | Medium | Medium | | Habitat im-
provement | Promote natural LWD jams
and gravel retention in
headwater streams | Water tem-
perature | Land ownership | Landowners,
USFS, BLM | High | High | High | | Identify and prioritize areas for restoration | Identify sites where gravel deposits and downed wood might enhance fish habitat | | Land ownership | Landowners,
USFS, BLM | Medium | Medium | Medium | ## 21. Higher erosion on agricultural lands, requiring more cover crops TEP goal affected: Reduce the adverse impacts of erosion and sedimentation from developed and developing areas Near term, high likelihood, medium consequence | Potential strategies | Potential Actions | Co-benefits | Barriers or conflicts | Partners | Effective-
ness | TEP
influence | Relative
cost | |----------------------|-------------------|-------------|-----------------------|--|--------------------|------------------|------------------| | Transfer | | | | Individual farmers, ODA (they are required to plant cover crops) | | | | #### 22. Changes in species distribution and habitat use in estuaries (from streamflow changes) TEP goal affected: Assess, protect and enhance estuary and tidal habitats Near term, high likelihood, medium consequence | Potential
strategies | Potential Actions | Co-benefits | Barriers or conflicts | Partners | Effective-
ness | TEP
influence | Relative
cost | |-------------------------|-------------------|-------------|-----------------------|----------|--------------------|------------------|------------------| | Accept | | | | | | | | #### 23. Estuary protection and restoration are more difficult to implement in some areas due to development of barriers TEP goal affected: Assess, protect and enhance estuary and tidal habitats Near term, high likelihood, medium consequence | Potential strategies | Potential Actions | Co-benefits | Barriers or conflicts | Partners | Effective-
ness | TEP
influence | Relative
cost | |---|--|--|---|----------------------|--------------------|------------------|------------------| | Reduce
impacts of new
and existing
development
on estuaries | Make recommendations
to County and Planning
Department for policies,
related to new develop-
ment, that support estuary
conservation and habitat
migration | Lower risk
to new
infrastructure;
potentially
lower insur-
ance costs | Potential conflict be-
tween conservation and
development | County/City | Medium | Medium | Low | | | Replace/remove/remediate existing infrastructure and development vital to estuary conservation and ecological functioning over long time frames | Water quality;
lower risk to
infrastructure | Loss of property. Potential conflict between conservation and development | State, Feds,
NGOs | Medium | Medium | High | #### 24. Changes in ocean-based prey, affecting salmonids, birds, and other species TEP goal affected: Promote beneficial uses of the bays and rivers Near term, high likelihood, medium consequence | Potential strategies | Potential Actions | Co-benefits | Barriers or conflicts | Partners | Effective-
ness | TEP
influence | Relative
cost | |-----------------------|--|---------------|-------------------------------------|---|--------------------|------------------|------------------| | Limit nutrient inputs | Farm water quality plans | Water quality | Impact on agriculture | NRCS/OSU
Extension, DEQ,
ODA, Soil and
Water Cons.
District | High | Medium | Low | | | Storm water management | Water quality | Cost of infrastructure improvements | City/County,
DEQ | High | Medium | High | | | County level ordinance or rulemaking | Water quality | | County, DEQ | High | Medium | High | | | Domestic sewage - septic system improvements or upgrades | Water quality | Cost of infrastructure improvements | City/County, pri-
vate landown-
ers, DEQ | High | Medium | High | | | Municipal sewage - waste-
water treatment plant
upgrades | Water quality | Cost of infrastructure improvements | Cities and Dis-
tricts, DEQ | High | Medium | High | |---|--|-----------------------------------|-------------------------------------|--------------------------------|--------|--------|------| | | Water quality monitoring and assessment (for quicker response) | | | DEQ, EPA, ODA | Medium | High | High | | Reduce
greenhouse
gas emissions
across the
County | TBD Actions to reduce GHG emissions | Help meet
state GHG
targets | | | | | | ## 25. Reduced ability of TEP and other partners to successfully implement restoration efforts TEP goal affected: Assess, protect, and enhance riparian habitat Near term, high likelihood, medium consequence | Potential strategies | Potential Actions | Co-benefits | Barriers or conflicts | Partners | Effective-
ness | TEP
influence | Relative
cost | |--|---|---------------|-----------------------|---------------------------------------|--------------------|------------------|------------------| | Improve ripar-
ian planting
survival | Plant diverse species in riparian areas | Water quality | | Watershed councils, Land trusts | High | High | Medium | | | Replant riparian areas as needed | Water quality | | Watershed councils, Land trusts | High | High | Medium | | | Monitor riparian planting survival | | | Watershed
councils, Land
trusts | High | High | Medium | ## 26. Declines in aquatic organisms sensitive to higher temperatures TEP goal affected: Assess, protect, and enhance wetland habitat Near term, high likelihood, medium consequence | Potential strategies | Potential Actions | Co-benefits | Barriers or conflicts | Partners | Effective-
ness | TEP
influence | Relative
cost | |---|--|---|--|----------|--------------------|------------------|------------------| | Identify and
prioritize areas
for restoration | Identify areas and prioritize
by estuarine and freshwater
type. Freshwater wetlands
expected to be more
vulnerable under drought
scenarios. | | | All | High | High | Medium | | Restore
wetlands and
floodplains | Planting and restoration
of wetlands with species
that are better adapted to
climate variability | Flood abate-
ment and
water quality | | All | High | High | High | | | Restore floodplain con-
nectivity for freshwater and
tidally influenced wetlands
and examine underlying
influences on hydrology | Flood abate-
ment and
water quality | Potentially creates con-
flicts between conserva-
tion and development | All | High | High | High | | | Riparian restoration in stream related wetlands | Flood abate-
ment and
water quality | Potential loss or conversion of ag lands | All | High | High | High | #### 27. Agricultural producers would need to increase restoration activities, reduce water withdrawals, and take more action to meet stream temperature requirements TEP goal affected: Improve farm management practices Mid term, high likelihood, high consequence | Potential strategies | Potential Actions | Co-benefits | Barriers or conflicts | Partners | Effective-
ness | TEP
influence | Relative
cost | |----------------------|-------------------|-------------|-----------------------|--------------------------------|--------------------|------------------|------------------| | Transfer | | | | Oregon Dept. of
Agriculture | | | | #### 28. More runoff and sedimentation of streams, as well as landslides TEP goal affected: Reduce sediment risks from forest management roads Mid term, high likelihood, high consequence | Potential strategies | Potential Actions | Co-benefits | Barriers or conflicts | Partners | Effective-
ness | TEP
influence | Relative
cost | |--|--|--|---|--|--------------------|------------------|------------------| | Improvements
to infrastruc-
ture | Reduce miles of unmaintained forest roads by fully decommissioning (remove culverts, pull back unstable slopes, reduce landslide risk) | Reduce
future
maintenance
costs | Access to private lands | ODF, Private
landowners,
USFS | High | Medium | High | | Reduce wild-
fire severity | Assess fuels across land-
scape (wetter coast to
drier inland), as well as the
potential efficacy of manag-
ing fuels | | | ODF, USFS, BLM,
landowners,
Universities | Medium | Medium | Low | | | Based on the results of the assessment, manage fuels for reduced wildfire severity while maintaining ecological values and function. | Safety and
emergency
prepared-ness | Access to private lands,
Needs ongoing and
continuous effort to be
effective, fuels manage-
ment not necessarily
effective | ODF, Private
landowners,
USFS | Medium | Medium | High | ## 29. Changes in the distribution and extent of tidal habitats, including low salt marsh, high marsh, and mudflats TEP goal affected: Assess, protect and enhance estuary and tidal habitats Mid term, high likelihood, high consequence | Potential
strategies | Potential Actions | Co-benefits | Barriers or conflicts | Partners | Effective-
ness | TEP
influence | Relative
cost | |--|---|-------------|---|---|--------------------|------------------|------------------| | Assess and manage for projected change | Re-map estuarine sedi-
ments and habitats | | | Federal, state,
local agencies,
NGOs, general
public | High | High | High | | | Revise management units to protect estuarine fringe | | Political challenges to revising management units | Federal, state,
local agencies,
NGOs, general
public | High | Medium | High | | | Accept loss of current boundaries | | | Federal, state,
local agencies,
NGOs, general
public | Low | Low | Low | #### 30. Changes in bird species and other wildlife, with some species losing habitat while others gain habitat TEP goal affected: Assess, protect, and enhance wetland habitat Mid term, high likelihood, high consequence | Potential strategies | Potential Actions | Co-benefits | Barriers or conflicts | Partners | Effective-
ness | TEP
influence | Relative
cost | |--|---|---|--|--|--------------------|------------------|------------------| | Assess and manage for projected change | Identify at risk habitats,
birds, and species | | | ODFW, USFWS,
NOAA, Audu-
bon | High | Medium | Medium | | Restore
wetlands and
floodplains | Planting and restoration
of wetlands with species
that are better adapted to
climate variability | Flood abate-
ment and
water quality | Potential conflicts be-
tween development and
conservation | ODFW, USFWS,
NOAA, Audu-
bon | High | High | High | | | Restore floodplain con-
nectivity for freshwater and
tidally influenced wetlands
and examine underlying
influences on hydrology | Flood abate-
ment and
water quality | Potentially creates con-
flicts between conserva-
tion and development | County, state,
federal, city,
private land
managers and
owners, NGOs | High | High | High | ## 31. Increased flood damage and declining water quality TEP goal affected: Assess, protect, and enhance wetland habitat Mid term, high likelihood, high consequence | Potential strategies | Potential Actions | Co-benefits | Barriers or conflicts | Partners | Effective-
ness | TEP
influence | Relative
cost | |---|--|-----------------------------|--|--|--------------------|------------------|------------------| | Identify and
prioritize areas
for restoration | Identify areas and prioritize
by estuarine and freshwater
type. Freshwater wetlands
expected to be more
vulnerable under drought
scenarios. | | Potentially creates conflicts between conservation and development | County, state,
federal, city
land managers
and owners,
NGOs | High | High | Medium | | Restore
wetlands and
floodplains | Planting and restoration
of wetlands with species
that are better adapted to
climate variability | Biodiversity
and habitat | Species may not be native to the region | County, state,
federal, city,
private land
managers and
owners, NGOs | High | High | High | | | Restore floodplain con-
nectivity for freshwater and
tidally influenced wetlands
and examine underlying
influences on hydrology | Biodiversity
and habitat | Potentially creates con-
flicts between conserva-
tion and development | County, state,
federal, city,
private land
managers and
owners, NGOs | High | High | High | #### 32. Reduced water quality and instream habitat quality from sedimentation TEP goal affected: Assess, protect, and enhance instream habitat Mid term, high likelihood, high consequence | Potential strategies | Potential Actions | Co-benefits | Barriers or conflicts | Partners | Effective-
ness | TEP
influence | Relative
cost | |--|--|-------------|-------------------------|---|--------------------|------------------|------------------| | Improve un-
derstanding of
risks related to
wildfire, forest
management
and climate
change | Review salvage logging
practices for better under-
standing of how this risk
affects the region | | | ODF, Private
landowners,
USFS | Medium | High | Low | | | Assess fuels across land-
scape (wetter coast to
drier inland) and manage
appropriately | | | ODF, Private
landowners,
USFS | Medium | High | Low | | Improvements
to infrastruc-
ture | Reduce miles of unmaintained forest roads by fully decommissioning (remove culverts, pull back unstable slopes, reduce landslide risk) | | Access to private lands | ODF, Private
landowners,
USFS, NGOs | Medium | High | High | # 33. Regulatory consequences of not meeting salmonid temperature requirements TEP goal affected: Reduce instream temperatures to meet salmonid requirements Mid term, medium likelihood, high consequence | Potentia
strategie | Co-benefits | Barriers or conflicts | Partners | Effective-
ness | TEP
influence | Relative
cost | |-----------------------|-------------|-----------------------|----------|--------------------|------------------|------------------| | Transfer | | | | | | | #### 34. Water quality declines and difficulty meeting targets TEP goal affected: Reduce instream suspended sediments to meet salmonid requirements Mid term, medium likelihood, high consequence | Potential strategies | Potential Actions | Co-benefits | Barriers or conflicts | Partners | Effective-
ness | TEP
influence | Relative
cost | |----------------------|-------------------|-------------|-----------------------|--|--------------------|------------------|------------------| | Transfer | | | | Private timber
industry, ODF,
USFS, EPA, DEQ | | | | #### 35. Higher risk of erosion and landslides TEP goal affected: Reduce sediment risks from forest management roads Mid term, medium likelihood, high consequence | Potential strategies | Potential Actions | Co-benefits | Barriers or conflicts | Partners | Effective-
ness | TEP
influence | Relative
cost | |----------------------|-------------------|-------------|-----------------------|------------------------------------|--------------------|------------------|------------------| | Transfer | | | | Private timber industry, ODF, USFS | | | | #### 36. More culvert replacement and repair necessary, as well as more road maintenance, affecting many areas with unmaintained or legacy roads TEP goal affected: Reduce sediment risks from forest management roads Mid term, medium likelihood, high consequence | Potential strategies | Potential Actions | Co-benefits | Barriers or conflicts | Partners | Effective-
ness | TEP
influence | Relative
cost | |---|--|--|--|--|--------------------|------------------|------------------| | Assess and
manage for
projected
change | Assess precipitation stan-
dards for culverts and roads
(e.g. 100-year storms) based
on climate projections and
review current standards | | | Landowners,
state or federal
agencies, Uni-
versities | Medium | Medium | Medium | | | Education and outreach
to promote appropriate
standards to all groups
(landowners, agencies,
Counties, etc.) | Access during
wildfire; Fish
passage im-
provements;
Water
quality
improvements | Short-term disturbance
associated with repair and
upgrades | Land manag-
ers, Watershed
councils | High | Medium | Low | #### 37. More sedimentation from wildfires at upper elevations TEP goal affected: Reduce the adverse impacts of rapidly moving landslides Mid term, medium likelihood, high consequence | Potential strategies | Potential Actions | Co-benefits | Barriers or conflicts | Partners | Effective-
ness | TEP
influence | Relative
cost | |----------------------|---|-------------|-----------------------|----------|--------------------|------------------|------------------| | Transfer | Monitor/Revisit because
thinning as a restoration
technique could be called
for to mitigate wildfire | | | | | | | ## 38. Bacteria from waste (esp. manure) flushed into the bays, affecting shellfish closures TEP goal affected: Promote beneficial uses of the bays and rivers Mid term, medium likelihood, high consequence | Potential strategies | Potential Actions | Co-benefits | Barriers or conflicts | Partners | Effective-
ness | TEP
influence | Relative
cost | |--------------------------------|---|--|---------------------------------|--|--------------------|------------------|------------------| | Improvements to infrastructure | Improvements to septic systems | Water quality,
health, tour-
ism | Cost, landowners | Landowners,
County, Munici-
palities, DEQ | High | Medium | High | | | Improvements to stormwater (stormwater retention) | Water quality,
health, tour-
ism | Cost | Landowners,
County, Munici-
palities, DOT,
DEQ, ODA | High | Medium | High | | Manage
streamflow | Sustainable water storage and release | Water quality,
health, tour-
ism | Water rights, costs,
permits | OWRD, DEQ,
ALL | Medium | Medium | High | | Agricultural
management | Manure management | Water quality,
health, tour-
ism | | DEQ, ODA | High | Medium | Medium | | | Education and outreach on manure management | Water quality,
health, tour-
ism | | DEQ, ODA | Medium | Medium | Medium | |-----------------------|---|--|------|----------|--------|--------|--------| | Limit nutrient inputs | Bacterial DNA identification to identify source | Water quality,
health, tour-
ism | Cost | DEQ, ODA | Medium | Medium | Medium | | | Point source identification | Water quality,
health, tour-
ism | | DEQ, ODA | Medium | Medium | High | ## 39. Reduced effectiveness of restoration activities in providing important habitat for fish and wildlife TEP goal affected: Assess, protect, and enhance riparian habitat Mid term, medium likelihood, high consequence | Potential strategies | Potential Actions | Co-benefits | Barriers or conflicts | Partners | Effective-
ness | TEP
influence | Relative
cost | |--|---|--|---|--|--------------------|------------------|------------------| | Improve un-
derstanding of
risks related to
wildfire, forest
management
and climate
change | Review riparian practices for areas affected by wildfire | | | | | | | | Reduce wild-
fire severity | Assess fuels across land-
scape (wetter coast to
drier inland), as well as the
potential efficacy of manag-
ing fuels | | | ODF, USFS, BLM,
landowners,
Universities | Medium | Medium | Low | | | Based on the results of the assessment manage fuels for reduced wildfire severity while maintaining ecological values and function. | Safety and
emergency
prepared-ness | Access to private lands,
Needs ongoing and
continuous effort to be
effective | ODF, Private
landowners,
USFS | Medium | Medium | High | #### 40. Exacerbate current issues and push systems beyond ecological and functional thresholds TEP goal affected: Improve floodplain condition Mid term, medium likelihood, high consequence | Potential strategies | Potential Actions | Co-benefits | Barriers or conflicts | Partners | Effective-
ness | TEP
influence | Relative
cost | |----------------------|--|--|--|----------|--------------------|------------------|------------------| | Habitat improvement | Large scale, holistic
floodplain management
to maintain and enhance
complexity and function | Biodiversity
and habitat,
flood abate-
ment | Perceived conflicts be-
tween conservation and
development/other land
uses, permits | All | High | High | High | ## 41. Damage to wetlands in forested areas, such as spruce swamp TEP goal affected: Assess, protect, and enhance wetland habitat Mid term, medium likelihood, high consequence | Potential strategies | Potential Actions | Co-benefits | Barriers or conflicts | Partners | Effective-
ness | TEP
influence | Relative
cost | |----------------------|-------------------|-------------|-----------------------|--|--------------------|------------------|------------------| | Transfer | | | | ODF, USFS,
Private timber
industry | | | | ## 42. Loss of wetland endemic species and specialists TEP goal affected: Assess, protect, and enhance wetland habitat Mid term, medium likelihood, high consequence | Potential strategies | Potential Actions | Co-benefits | Barriers or conflicts | Partners | Effective-
ness | TEP
influence | Relative
cost | |---|--|---|--|----------|--------------------|------------------|------------------| | Identify and
prioritize areas
for restoration | Identify areas and prioritize
by estuarine and freshwater
type. Freshwater wetlands
expected to be more
vulnerable under drought
scenarios. | | | All | High | High | Medium | | Restore
wetlands and
floodplains | Planting and restoration of wetlands with species that are better adapted to climate variability | Flood abate-
ment and
water quality | | All | High | High | High | | | Restore floodplain con-
nectivity for freshwater and
tidally influenced wetlands
and examine underlying
influences on hydrology | Flood abate-
ment and
water quality | Potentially creates con-
flicts between conserva-
tion and development | All | High | High | High | | | Riparian restoration in stream related wetlands | Flood abate-
ment and
water quality | Potential loss or conversion of ag lands | All | High | High | High | | Protect
groundwater
sources | TBD | | Water rights and use | OWRD | High | Medium | High | #### 43. Build up of manure due to drought TEP goal affected: Improve farm management practices Mid term, medium likelihood, high consequence | Potential strategies | Potential Actions | Co-benefits | Barriers or conflicts | Partners | Effective-
ness | TEP
influence | Relative
cost | |----------------------|-------------------|-------------|-----------------------|---|--------------------|------------------|------------------| | Transfer | | | | ODA, Health
department,
DEQ, others | | | | # 44. Inundated areas and habitats affected by infrastructure failure during king tides TEP goal affected: Assess, protect and enhance estuary and tidal habitats Mid term, high likelihood, medium consequence | Potential strategies | Potential Actions | Co-benefits | Barriers or conflicts | Partners | Effective-
ness | TEP
influence | Relative
cost | |--|--|-------------|--|----------------------------|--------------------|------------------|------------------| | Assess and manage for projected change | Using sea level rise study/
report, assess culverts,
dikes, other infrastructure,
and natural areas at risk | | | Tillamook
County/Cities | High | High | Low | | | Prioritize, replace, remove, and remediate based on the results of the above study. | | Could create conflict
between conservation vs.
development | ODOT, ODFW,
Feds, NGOs | High | Medium | High | ## 45. Impacts to desirability of the region for tourist travel from water shortages TEP goal affected: Promote beneficial uses of the bays and rivers Mid term, high likelihood, medium consequence | Potential strategies | Potential Actions | Co-benefits | Barriers or conflicts | Partners | Effective-
ness | TEP
influence | Relative
cost | |----------------------|-------------------|-------------|-----------------------|----------|--------------------|------------------|------------------| | Transfer | | | | EPA, DEQ | | | | # 46. Increases in algae, bacteria, and other water-borne
diseases, which can cause human illness TEP goal affected: Promote beneficial uses of the bays and rivers Mid term, high likelihood, medium consequence | Potential strategies | Potential Actions | Co-benefits | Barriers or conflicts | Partners | Effective-
ness | TEP
influence | Relative
cost | |---|---|------------------------------|---|--|--------------------|------------------|------------------| | Improvements to infrastructure | Improvements to septic systems | Fisheries and shellfisheries | Cost, landowners | Landowners,
County, Munici-
palities, DEQ | High | Medium | High | | | Improvements to stormwater (stormwater retention) | Fisheries and shellfisheries | Cost | Landowners,
County, Munici-
palities, DOT,
DEQ, ODA | High | Medium | High | | Manage
streamflow | Sustainable water storage and release | Fisheries and shellfisheries | Water rights, costs,
permits | OWRD, DEQ,
ALL | Medium | Medium | High | | Agricultural management | Manure management | Fisheries and shellfisheries | | DEQ, ODA | High | Medium | Medium | | | Education and outreach on manure management | Fisheries and shellfisheries | | DEQ, ODA | Medium | Medium | Medium | | Limit nutrient inputs | Bacterial DNA identification to identify source | Fisheries and shellfisheries | Cost | DEQ, ODA | Medium | Medium | Medium | | | Point source identification | Fisheries and shellfisheries | | DEQ, ODA | Medium | Medium | High | | Increase
natural upland
water storage | Promote beaver habitat in the uplands | Biodiversity
and habitat | Loss of riparian veg-
etation and warming
water in ponds, potential
misperception, landown-
er concerns | USFWS, ODFW | Unknown | Medium | Medium | #### 47. Increases in algae, bacteria, and other water-borne diseases, which can cause human illness TEP goal affected: Promote beneficial uses of the bays and rivers Mid term, high likelihood, medium consequence | Potential
strategies | Potential Actions | Co-benefits | Barriers or conflicts | Partners | Effective-
ness | TEP
influence | Relative
cost | |---|---|------------------------------|---|--|--------------------|------------------|------------------| | Improvements to infrastructure | Improvements to septic systems | Fisheries and shellfisheries | Cost, landowners | Landowners,
County, Munici-
palities, DEQ | High | Medium | High | | | Improvements to stormwater (stormwater retention) | Fisheries and shellfisheries | Cost | Landowners,
County, Munici-
palities, DOT,
DEQ, ODA | High | Medium | High | | Manage
streamflow | Sustainable water storage and release | Fisheries and shellfisheries | Water rights, costs,
permits | OWRD, DEQ,
ALL | Medium | Medium | High | | Agricultural management | Manure management | Fisheries and shellfisheries | | DEQ, ODA | High | Medium | Medium | | | Education and outreach on manure management | Fisheries and shellfisheries | | DEQ, ODA | Medium | Medium | Medium | | Limit nutrient inputs | Bacterial DNA identification to identify source | Fisheries and shellfisheries | Cost | DEQ, ODA | Medium | Medium | Medium | | | Point source identification | Fisheries and shellfisheries | | DEQ, ODA | Medium | Medium | High | | Increase
natural upland
water storage | Promote beaver habitat in the uplands | Biodiversity
and habitat | Loss of riparian vegeta-
tion, warming water in
ponds, misperception,
landowner concerns | USFWS, ODFW | Unknown | Medium | Medium | #### 48. Large scale die offs of certain tree species that are unfit for the new climatic conditions TEP goal affected: Promote beneficial uses of the bays and rivers Long term, high likelihood, medium consequence | Potential strategies | Potential Actions | Co-benefits | Barriers or conflicts | Partners | Effective-
ness | TEP
influence | Relative
cost | |--|---|-----------------------------|---|---|--------------------|------------------|------------------| | Increase forest
diversity and
resilience | Replant with multiple tree
species to preserve and
enhance diversity | Biodiversity and habitat | Native versus non-native species issues | Private land-
owners, federal
and state agen-
cies, Universities | Medium | Low | Medium | | | Assess establishment and survival of tree species post-disturbance and over longer time periods to determine the most suitable species for planting | Biodiversity
and habitat | Long term monitoring
needed | Private land-
owners, federal
and state agen-
cies, Universities | High | Medium | Medium | #### 49. Negative impacts to the forestry industry from large and catastrophic fires TEP goal affected: Promote beneficial uses of the bays and rivers Long term, high likelihood, medium consequence | Potential
strategies | Potential Actions | Co-benefits | Barriers or conflicts | Partners | Effective-
ness | TEP
influence | Relative
cost | 1 | |-------------------------|-------------------|-------------|-----------------------|------------------------------------|--------------------|------------------|------------------|---| | Transfer | | | | Private timber industry, ODF, USFS | | | | | #### 50. Overall loss of available fish habitat reduces angling opportunities TEP goal affected: Promote beneficial uses of the bays and rivers Near term, medium likelihood, medium consequence | Potential strategies | Potential Actions | Co-benefits | Barriers or conflicts | Partners | Effective-
ness | TEP
influence | Relative
cost | |----------------------|-------------------|-------------|-----------------------|----------------------|--------------------|------------------|------------------| | Transfer | | | | ODFW, NOAA,
USFWS | | | | ## 51. Forest managers required to protect more area from logging that removes roots, disturbs slopes, and increases risk TEP goal affected: Reduce the adverse impacts of rapidly moving landslides Near term, medium likelihood, medium consequence | Potential strategies | Potential Actions | Co-benefits | Barriers or conflicts | Partners | Effective-
ness | TEP
influence | Relative
cost | |----------------------|-------------------|-------------|-----------------------|--|--------------------|------------------|------------------| | Transfer | | | | ODF, Private
timber industry,
USFS | | | | #### 52. Increased toxics from flooded contaminated sites and redistribution of toxic hotspots TEP goal affected: Assess, protect and enhance estuary and tidal habitats Near term, medium likelihood, medium consequence | Potential | | | | | Effective- | TEP | Relative | |------------|-------------------|-------------|-----------------------|----------|------------|-----------|----------| | strategies | Potential Actions | Co-benefits | Barriers or conflicts | Partners | ness | influence | cost | | Transfer | | | | DEQ, EPA | | | | ## 53. Reduced survival of riparian plantings near steep slopes TEP goal affected: Assess, protect, and enhance riparian habitat Near term, medium likelihood, medium consequence | Potential strategies | Potential Actions | Co-benefits | Barriers or conflicts | Partners | Effective-
ness | TEP
influence | Relative
cost | |--|---|---------------|-----------------------|---------------------------------------|--------------------|------------------|------------------| | Improve ripar-
ian planting
survival | Plant diverse species in riparian areas | Water quality | | Watershed councils, Land trusts | High | High | Medium | | | Replant riparian areas as needed | Water quality | | Watershed councils, Land trusts | High | High | Medium | | | Monitor riparian planting survival | | | Watershed
councils, Land
trusts | High | High | Medium | ## 54. Less shading and warmer water, reduced instream habitat quality TEP goal affected: Assess, protect, and enhance instream habitat Mid term, medium likelihood, medium consequence | Potential strategies | Potential Actions | Co-benefits | Barriers or conflicts | Partners | Effective-
ness | TEP
influence | Relative
cost | |---|--|-------------|-----------------------|---|--------------------|------------------|------------------| | Continue
with current
management
strategies and
monitor for
changes | Maintain Riparian Man-
agement Areas (RMAs)
strategies | | | USFW, ODFW,
NOAA | High | High | Medium | | | Monitor for changes in vegetation | | | USFW, ODFW,
NOAA | High | High | Medium | | Develop
appropriate
vegetation
management
actions if
changes are
detected | Change in the type of vegetation used in riparian restoration activities | | | All landowners,
OSU Research,
USFW, ODFW,
NOAA | High | High | Low | ## 55. Reduced water quality from sedimentation, nutrients, and bacterial contamination
related to livestock TEP goal affected: Assess, protect, and enhance instream habitat Mid term, medium likelihood, medium consequence | Potential strategies | Potential Actions | Co-benefits | Barriers or conflicts | Partners | Effective-
ness | TEP
influence | Relative
cost | |-------------------------|---|---|--|--|--------------------|------------------|------------------| | Agricultural management | Off channel watering | Riparian habi-
tat improve-
ments | Private landowners, ODA regulations and Farm Management Plans | Landowners,
ODA, Soil and
Water Cons Dist,
NRCS | High | Medium | High | | | Rainwater collection off barn/storage roofs for watering | Riparian habi-
tat improve-
ments | Private landowners, ODA regulations and Farm Management Plans | Landowners,
ODA, Soil and
Water Cons Dist,
NRCS | High | Low | Medium | | | Animal exclusion fencing | Riparian habi-
tat improve-
ments | Infringement on use of ag lands | Landowners,
ODA, Soil and
Water Cons Dist,
NRCS | High | High | Medium | | | Promote (construct) live-
stock crossings at bridge/
hardened fords | | Water quality related to nutrients and bacteria not addressed, Permits | Landowners,
ODA, Soil and
Water Cons Dist,
NRCS | Medium | Medium | High | # 56. Impacts to native aquatic wildlife (especially fish) and vegetation TEP goal affected: Promote beneficial uses of the bays and rivers Mid term, medium likelihood, medium consequence | Potential strategies | Potential Actions | Co-benefits | Barriers or conflicts | Partners | Effective-
ness | TEP
influence | Relative
cost | |---|--|------------------------------|---|---|--------------------|------------------|------------------| | Manage
streamflow | Sustainable water storage and release | Water quality | Water rights, costs, permits | All | Medium | Medium | High | | Habitat Im-
provement | Increase off-channel habitat | Flood abate-
ment | Space availability, costs, permits | All | High | High | High | | | Large woody debris (LWD)
to collect gravels for more
subsurface flow and assist
catching landslide material | Reduce water
temperatures | Costs | All | High | High | High | | | Floodplain habitat restoration | Flood abate-
ment | Perceived conflicts be-
tween conservation and
development/other land
uses, permits | All | High | High | High | | | Riparian plantings | Biodiversity and habitat | | Watershed councils, Land trusts | High | High | High | | | Stream channel restoration to create more channel complexity | Flood abate-
ment | Difficult to show success of big restoration projects via monitoring | All | High | High | High | | | Reconnect springs, wet-
lands, floodplains that can
serve as cold water refugia | Flood abate-
ment | Difficult to show success of big restoration projects via monitoring | Watershed councils | High | High | High | | | Address warming caused by inline impoundments | Water quality | Balance water need with
flow requirements for
cooling | Private land-
owners
USFW, ODFW,
NOAA, ODA,
OWRD | Low | Low | High | | | Forest management strategy to balance water absorption | Biodiversity
and habitat | Forest practices | Private land-
owners
USFW, ODFW,
NOAA, ODA,
OWRD | Medium | Medium | High | | | Increase diversity of habitat to create more salmonid life history options | Biodiversity and habitat | | All | Medium | High | Medium | | Increase
natural upland
water storage | Promote beaver habitat in the uplands | Biodiversity
and habitat | Loss of riparian veg-
etation and warming
water in ponds, potential
misperception, landown-
er concerns | USFWS, ODFW | Unknown | Medium | Medium | | Protect existing habitat | Protect existing healthy riparian vegetation, which provides shade | Biodiversity
and habitat | Property/landowner
concerns and rights,
limitations on use and
perceived use | USFWS, ODFW,
NOAA, Land-
owners, Local
governments
(municipal,
county) | High | High | Low | | Reduce water
demand | Education and outreach on water conservation | | | Watershed
councils,
municipalities,
media, water
districts | High | High | Medium | # 57. Water treatment facilities shut down from too much sedimentation in rivers and creeks TEP goal affected: Promote beneficial uses of the bays and rivers Mid term, medium likelihood, medium consequence | Potential strategies | Potential Actions | Co-benefits | Barriers or conflicts | Partners | Effective-
ness | TEP
influence | Relative
cost | |---|---|--|---|--|--------------------|------------------|------------------| | Improvements
to infrastruc-
ture | Identify culverts and roads
most at risk of failure from
high flows (esp. those
culverts with insufficient
capacity) | | Access to culverts and roads on private lands | NRCS, County,
Cities, ODF,
USFS, BLM,
Landowners,
ODOT | Medium | High | Low | | | Replace or remove culverts and roads most at risk | Safety and access benefits | Cost, regulatory compo-
nents, waste disposal and
management, land avail-
ability for relocation | Wastewater
treatment
plants (special
districts), EPA,
DEQ, Tillamook
County (as
permitter) | High | Medium | High | | | Reduce miles of unmain-
tained forest roads by fully
decommissioning (remove
culverts, pull back unstable
slopes, reduce landslide
risk) | Reduce future
maintenance
costs | Access to private lands | ODF, Private
landowners,
USFS | High | Medium | High | | Reduce wild-
fire severity | Assess fuels across land-
scape (wetter coast to
drier inland), as well as the
potential efficacy of manag-
ing fuels | | | ODF, USFS, BLM,
landowners,
Universities | Medium | Medium | Low | | | Based on the results of the assessment, manage fuels for reduced wildfire severity while maintaining ecological values and function | Safety and
emergency
prepared-ness | Access to private lands,
Needs ongoing and
continuous effort to be
effective | ODF, Private
landowners,
USFS | Medium | Medium | High | | Improve land
management
practices in
high risk areas | Change policy on ground
cover retention on steep
slopes to increase cover
and re-plant | Water quality | | Private land
owners, USFS,
BLM, ODF | Medium | Medium | Low | #### 58. More stormwater control measures required due to non point-source pollution entering streams TEP goal affected: Assess and upgrade urban non-point treatment infrastructure Mid term, medium likelihood, medium consequence | Potential
strategies | Potential Actions | Co-benefits | Barriers or conflicts | Partners | Effective-
ness | TEP
influence | Relative
cost | |-------------------------|-------------------|-------------|-----------------------|----------|--------------------|------------------|------------------| | Transfer | | | | | | | | #### 59. Reduced beach and shore access for recreational opportunities and habitat restoration due to new armoring and other treatments to prevent erosion TEP goal affected: Promote beneficial uses of the bays and rivers Mid term, medium likelihood, medium consequence | Potential
strategies | Potential Actions | Co-benefits | Barriers or conflicts | Partners | Effective-
ness | TEP
influence | Relative
cost | | |-------------------------|-------------------|-------------|-----------------------|-----------------------------|--------------------|------------------|------------------|--| | Transfer | | | | Tillamook
County, Cities | | | | | ## 60. Simplification of riparian areas, loss of side channels for flood abatement and significant impacts to fish TEP goal affected: Improve floodplain condition Mid term, medium likelihood, medium consequence | Potential strategies | Potential Actions | Co-benefits | Barriers or conflicts | Partners | Effective-
ness | TEP
influence | Relative
cost | |--------------------------|--|--|---|--|--------------------|------------------|------------------| | Habitat im-
provement | Set back dikes to increase channel width and improve floodplain function | Biodiversity
and habitat,
flood abate-
ment | Landowners' expecta-
tions, remove land
from management and
taxation | Landowners
and granting
agencies | | | | | | Large scale, holistic
floodplain management
to maintain and enhance
complexity and function | | | | | | | #### 61. Agricultural producers may need to plant alternatives TEP goal affected: Improve farm management practices Mid
term, medium likelihood, medium consequence **Potential** Effective-TEP Relative **Potential Actions** Co-benefits Barriers or conflicts **Partners** influence strategies ## Transfer Agricultural Extension ## 62. Shorter agricultural growing season due to waterlogged grasses TEP goal affected: Improve farm management practices Mid term, medium likelihood, medium consequence | Potential strategies | Potential Actions | Co-benefits | Barriers or conflicts | Partners | Effective-
ness | TEP
influence | Relative
cost | |----------------------|-------------------|-------------|-----------------------|--|--------------------|------------------|------------------| | Transfer | | | | DOA, Private
landowners,
Agricultural
Extension | | | | ## 63. Higher densities and less oxygen lead to shifts in energy budgets for fish TEP goal affected: Assess health of salmonid, shellfish, and other aquatic species stocks Mid term, high likelihood, low consequence | Potential strategies | Potential Actions | Co-benefits | Barriers or conflicts | Partners | Effective-
ness | TEP
influence | Relative
cost | |---|--|------------------------------|--|---------------------------------|--------------------|------------------|------------------| | Manage
streamflow | Sustainable water storage and release | Water quality | Water rights, costs, permits | All | Medium | Medium | High | | Habitat improvement (to maintain or reduce temps) | Increase off-channel habitat | Flood abate-
ment | Space availability, costs, permits | All | High | High | High | | | Large woody debris (LWD)
to collect gravels for more
subsurface flow and assist
catching landslide material | Reduce water
temperatures | Costs | All | High | High | High | | | Floodplain habitat restoration | Flood abate-
ment | Perceived conflicts be-
tween conservation and
development/other land
uses, permits | All | High | High | High | | | Riparian plantings | Biodiversity and habitat | | Watershed councils, Land trusts | High | High | High | | | Stream channel restoration to create more channel complexity | Flood abate-
ment | Difficult to show success of big restoration projects via monitoring | All | High | High | High | | | Reconnect springs, wet-
lands, floodplains that can
serve as cold water refugia | Flood abate-
ment | Difficult to show success of big restoration projects via monitoring | Watershed councils | High | High | High | |---|--|--|---|---|---------|--------|--------| | | Address warming caused by inline impoundments | Water quality | Balance water need with
flow requirements for
cooling | Private land-
owners
USFW, ODFW,
NOAA, ODA,
OWRD | Low | Low | High | | | Forest management strategy to balance water absorption | Biodiversity
and habitat | Forest practices | Private land-
owners
USFW, ODFW,
NOAA, ODA,
OWRD | Medium | Medium | High | | | Increase diversity of habitat to create more salmonid life history options | Biodiversity and habitat | | All | Medium | High | Medium | | Increase
natural upland
water storage | Promote beaver habitat in the uplands | Biodiversity
and habitat | Loss of riparian veg-
etation and warming
water in ponds, potential
misperception, landown-
er concerns | USFWS, ODFW | Unknown | Medium | Medium | | Protect exist-
ing habitat | Protect existing healthy riparian vegetation, which provides shade | | Property/landowner
concerns and rights,
limitations on use and
perceived use | USFWS, ODFW,
NOAA, Land-
owners, Local
governments
(municipal,
county) | High | High | Low | | Assess and
manage for
projected
change | Develop/use models to
view stream estuary condi-
tions 50-100 years out (for
planning current and near
future actions) | Inform many
other plans
and projects | Property/landowner
concerns and rights,
limitations on use and
perceived use
Model development | Universities or govt. agencies | Medium | Medium | Medium | #### 64. More angling closures in recreational fisheries TEP goal affected: Promote beneficial uses of the bays and rivers Mid term, high likelihood, low consequence | Potential
strategies | Potential Actions | Co-benefits | Barriers or conflicts | Partners | Effective-
ness | TEP
influence | Relative
cost | |-------------------------|-------------------|-------------|-----------------------|--------------|--------------------|------------------|------------------| | Transfer | | | | ODFWS, USFWS | | | | # 65. More marine/brackish conditions favoring marine organisms in estuaries TEP goal affected: Assess health of salmonid, shellfish, and other aquatic species stocks Mid term, high likelihood, low consequence | Potential strategies | Potential Actions | Co-benefits | Barriers or conflicts | Partners | Effective-
ness | TEP
influence | Relative
cost | |----------------------|---------------------|-------------|-----------------------|----------|--------------------|------------------|------------------| | Accept | Monitor and revisit | | | | | | | # 66. Greater need for restoration activities for bays and rivers due to use TEP goal affected: Promote beneficial uses of the bays and rivers Mid term, high likelihood, low consequence | Potential strategies | Potential Actions | Co-benefits | Barriers or conflicts | Partners | Effective-
ness | TEP
influence | Relative
cost | |---|------------------------|--|-----------------------|--|--------------------|------------------|------------------| | Reduce visitor
impacts to
bays and rivers | Education and outreach | Can combine
with other
outreach
efforts; brings
visibility to
TEP | | Watershed
councils,
municipalities,
media | High | High | Medium | #### 67. Economic stress to farmers from increasing inundation of agricultural lands with sea water TEP goal affected: Improve farm management practices Mid term, high likelihood, low consequence | Potential strategies | Potential Actions | Co-benefits | Barriers or conflicts | Partners | Effective-
ness | TEP
influence | Relative
cost | |----------------------------|--|-----------------------------|---|---|--------------------|------------------|------------------| | Agricultural
management | Improve drainage function
of lower tidal wetlands
through restoration, there-
by improving productivity
of upland agricultural areas | Biodiversity
and habitat | Permitting, landowner
participation, cost, offsite
impacts (or perceptions
of) | ODA, Tillamook
County, FEMA,
ODFW, NRCS,
NOAA, USFWS,
Landowners,
Local govts. | High | High | High | #### 68. Increased build up of manure from increased winter precipitation TEP goal affected: Improve farm management practices Mid term, high likelihood, low consequence | Potential strategies | Potential Actions | Co-benefits | Barriers or conflicts | Partners | Effective-
ness | TEP
influence | Relative
cost | |----------------------|-------------------|-------------|-----------------------|--------------------------------------|--------------------|------------------|------------------| | Transfer | | | | ODA, private
farmers, EPA,
DEQ | | | | #### 69. Declines in water quality and beneficial uses of bays and rivers TEP goal affected: Promote beneficial uses of the bays and rivers Long term, medium likelihood, medium consequence | Potential strategies | Potential Actions | Co-benefits | Barriers or conflicts | Partners | Effective-
ness | TEP
influence | Relative
cost | |---|--|--------------------------|---|--|--------------------|------------------|------------------| | Continue
water quality
monitoring | Continue water quality monitoring | | | | Medium | High | Medium | | Reduce visitor impacts to bays and rivers | Education and outreach to share water quality info with stakeholders and users | | | Watershed
Councils | Medium | High | Low | | | Education and outreach
to keep users away from
stressed areas | Biodiversity and habitat | Difficult to affect people's behavior; no enforcement | Many educa-
tion partners,
Community
volunteers | High | Medium | Medium | # 70. Loss of important riparian habitats for species such as birds, small mammals, insects, and amphibians TEP goal affected: Assess, protect, and enhance riparian habitat Mid term, medium likelihood, low consequence | 0 | | | | | E((.: | TED | D 1 11 |
---|--|-------------|-----------------------|---|--------------------|------------------|------------------| | Potential strategies | Potential Actions | Co-benefits | Barriers or conflicts | Partners | Effective-
ness | TEP
influence | Relative
cost | | Continue
with current
management
strategies and
monitor for
changes | Maintain Riparian Man-
agement Areas (RMAs)
strategies | | | USFW, ODFW,
NOAA, Farm
Bureau, ODA,
TNC, ODF | High | High | Medium | | | Monitor for changes in vegetation | | | USFW, ODFW,
NOAA, Farm
Bureau, ODA,
TNC, ODF | High | High | Medium | | Develop
appropriate
vegetation
management
actions if
changes are
detected | Change in the type of vegetation used in riparian restoration activities | | | All landowners,
OSU Research,
USFW, ODFW,
NOAA | High | High | Low | | Habitat improvement | Expand conservation and restoration activities to ensure maintenance of specific types of wildlife habitat | Ecosystem
services | | Watershed
councils, TNC,
USFWS | High | High | High | |---|--|-----------------------|-------------------------|--------------------------------------|--------|------|--------| | Increase strate-
gy for invasive
management | Aggressive PRISM approach | | | | High | High | Medium | | | Herbicide use for control | | Increased herbicide use | | Medium | High | Medium | ## 71. Impacts to desirability of the region for tourist travel from beach closures TEP goal affected: Promote beneficial uses of the bays and rivers Mid term, low likelihood, low consequence | Potential strategies | Potential Actions | Co-benefits | Barriers or conflicts | Partners | Effective-
ness | TEP
influence | Relative
cost | |---|--|------------------------------|---|--|--------------------|------------------|------------------| | Improvements
to infrastruc-
ture | Move/improve (lagoon
to cistern) wastewater
treatment lagoons (a few in
Nehalem, Cloverdale) to re-
duce risk from overflowing | Fisheries and shellfisheries | Cost, landowner partici-
pation, re-routing traffic,
regulatory components | Municipalities,
special districts,
Oregon health
authority, DEQ | High | Medium | High | | | Improvements to septic systems | Fisheries and shellfisheries | Cost, landowners | Landowners,
County, Munici-
palities, DEQ | High | Medium | High | | | Improvements to stormwater infrastructure | Fisheries and shellfisheries | Cost | Landowners,
County, Munici-
palities, DOT,
DEQ, ODA | High | Medium | High | | Manage
streamflow | Sustainable water storage and release | Water quality | Water rights, costs, permits | OWRD, DEQ,
ALL | Medium | Medium | High | | Increase
natural upland
water storage | Promote beaver habitat in the uplands | Biodiversity
and habitat | Loss of riparian veg-
etation and warming
water in ponds, potential
misperception, landown-
er concerns | USFWS, ODFW | Unknown | Medium | Medium | ## 72. More frequent limits on commercial and recreational use of bays from storms TEP goal affected: Promote beneficial uses of the bays and rivers Mid term, low likelihood, low consequence | Potential
strategies | Potential Actions | Co-benefits | Barriers or conflicts | Partners | Effective-
ness | TEP
influence | Relative
cost | | |-------------------------|-------------------|-------------|-----------------------|----------|--------------------|------------------|------------------|--| | Accept | | | | | | | | | ## 73. Increased occurrence of human-wildlife conflicts and crop damage TEP goal affected: Improve farm management practices Mid term, low likelihood, low consequence | Potential strategies | Potential Actions | Co-benefits | Barriers or conflicts | Partners | Effective-
ness | TEP
influence | Relative
cost | |----------------------|-------------------|-------------|-----------------------|---|--------------------|------------------|------------------| | Transfer | | | | USDA Wildlife
Services, Plan-
ning Commis-
sions | | | | ## 74. Saltwater intrusion impacts to residential and agricultural groundwater users TEP goal affected: Promote beneficial uses of the bays and rivers Long term, low likelihood, low consequence | Potential
strategies | Potential Actions | Co-benefits | Barriers or conflicts | Partners | Effective-
ness | TEP
influence | Relative
cost | |-------------------------|-------------------|-------------|-----------------------|----------|--------------------|------------------|------------------| | Transfer | | | | EPA, DEQ | | | |